Systemic infections and inflammation affect chronic neurodegeneration (original) (raw)
Combrinck, M. I., Perry, V. H. & Cunningham, C. Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience112, 7–11 (2002). ArticleCASPubMed Google Scholar
Cunningham, C., Wilcockson, D. C., Campion, S., Lunnon, K. & Perry, V. H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci.25, 9275–9284 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dantzer, R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur. J. Pharmacol.500, 399–411 (2004). ArticleCASPubMed Google Scholar
Laflamme, N. & Rivest, S. Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor κBα within specific cellular populations of the rat brain. J. Neurochem.73, 309–321 (1999). ArticleCASPubMed Google Scholar
Chakravarty, S. & Herkenham, M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci.25, 1788–1796 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ek, M. et al. Inflammatory response: pathway across the blood–brain barrier. Nature410, 430–431 (2001). ArticleCASPubMed Google Scholar
Perry, V. H. & Gordon, S. Macrophages and microglia in the nervous system. Trends Neurosci.11, 273–277 (1988). ArticleCASPubMed Google Scholar
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308, 1314–1318 (2005). ArticleCASPubMed Google Scholar
Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science290, 1768–1771 (2000). ArticleCASPubMed Google Scholar
Mott, R. T. et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia46, 369–379 (2004). ArticlePubMed Google Scholar
Daws, M. R. et al. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol.171, 594–599 (2003). ArticleCASPubMed Google Scholar
Schmid, C. D. et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J. Neurochem.83, 1309–1320 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kreutzberg, G. W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci.19, 312–318 (1996). ArticleCASPubMed Google Scholar
Raivich, G. et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Brain Res. Rev.30, 77–105 (1999). ArticleCASPubMed Google Scholar
Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol.3, 23–35 (2003). ArticleCAS Google Scholar
Stout, R. D. et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol.175, 342–349 (2005). ArticleCASPubMed Google Scholar
Etminan, M., Gill, S. & Samii, A. Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies. BMJ327, 128 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, H. et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease. Ann. Neurol.58, 963–967 (2005). ArticleCASPubMed Google Scholar
McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett.79, 195–200 (1987). ArticleCASPubMed Google Scholar
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron49, 489–502 (2006). ArticleCASPubMed Google Scholar
D'Andrea, M. R., Cole, G. M. & Ard, M. D. The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol. Aging25, 675–683 (2004). ArticleCASPubMed Google Scholar
Combs, C. K., Karlo, J. C., Kao, S. C. & Landreth, G. E. β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci.21, 1179–1188 (2001). ArticleCASPubMedPubMed Central Google Scholar
Brown, D. R., Schmidt, B. & Kretzschmar, H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature380, 345–347 (1996). ArticleCASPubMed Google Scholar
Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci.23, 2665–2674 (2003). ArticleCASPubMedPubMed Central Google Scholar
Koenigsknecht, J. & Landreth, G. Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci.24, 9838–9846 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ajmone-Cat, M. A., Nicolini, A. & Minghetti, L. Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E2 synthesis. J. Neurochem.87, 1193–1203 (2003). ArticleCASPubMed Google Scholar
Griffin, W. S. & Mrak, R. E. Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer's disease. J. Leukoc. Biol.72, 233–238 (2002). CASPubMed Google Scholar
Lim, G. P. et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci.20, 5709–5714 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lim, G. P. et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol. Aging22, 983–991 (2001). ArticleCASPubMed Google Scholar
Quinn, J. et al. Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer's disease. J. Neuroimmunol.137, 32–41 (2003). ArticleCASPubMed Google Scholar
Sly, L. M. et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res. Bull.56, 581–588 (2001). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl Acad. Sci. USA99, 10837–10842 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hensley, K. et al. Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. J. Neurochem.82, 365–374 (2002). ArticleCASPubMed Google Scholar
Hensley, K. et al. Message and protein-level elevation of tumor necrosis factor α (TNFα) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol. Dis.14, 74–80 (2003). ArticleCASPubMed Google Scholar
Nguyen, M. D., Julien, J. P. & Rivest, S. Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1β in neurodegeneration. Ann. Neurol.50, 630–639 (2001). ArticleCASPubMed Google Scholar
Depino, A. M. et al. Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson's disease. Eur. J. Neurosci.18, 2731–2742 (2003). ArticlePubMed Google Scholar
Sriram, K. et al. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson's disease. FASEB J.16, 1474–1476 (2002). ArticleCASPubMed Google Scholar
Rousselet, E. et al. Role of TNF-α receptors in mice intoxicated with the parkinsonian toxin MPTP. Exp. Neurol.177, 183–192 (2002). ArticleCASPubMed Google Scholar
Leng, A., Mura, A., Feldon, J. & Ferger, B. Tumor necrosis factor-α receptor ablation in a chronic MPTP mouse model of Parkinson's disease. Neurosci. Lett.375, 107–111 (2005). ArticleCASPubMed Google Scholar
Brown, A. R. et al. Inducible cytokine gene expression in the brain in the ME7/CV mouse model of scrapie is highly restricted, is at a strikingly low level relative to the degree of gliosis and occurs only late in disease. J. Gen. Virol.84, 2605–2611 (2003). ArticleCASPubMed Google Scholar
Cunningham, C., Wilcockson, D. C., Boche, D. & Perry, V. H. Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J. Virol.79, 5174–5184 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cunningham, C., Boche, D. & Perry, V. H. Transforming growth factor β1, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol. Appl. Neurobiol.28, 107–119 (2002). ArticleCASPubMed Google Scholar
Felton, L. M. et al. MCP-1 and murine prion disease: Separation of early behavioural dysfunction from overt clinical disease. Neurobiol. Dis.20, 283–295 (2005). ArticleCASPubMed Google Scholar
Mabbott, N. A. et al. Tumor necrosis factor α-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J. Virol.74, 3338–3344 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bogdan, C., Paik, J., Vodovotz, Y. & Nathan, C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-β and interleukin-10. J. Biol. Chem.267, 23301–23308 (1992). CASPubMed Google Scholar
McDonald, P. P., Fadok, V. A., Bratton, D. & Henson, P. M. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-β in macrophages that have ingested apoptotic cells. J. Immunol.163, 6164–6172 (1999). CASPubMed Google Scholar
Schook, L. B., Albrecht, H., Gallay, P. & Jongeneel, C. V. Cytokine regulation of TNF-α mRNA and protein production by unprimed macrophages from C57Bl/6 and NZW mice. J. Leukoc. Biol.56, 514–520 (1994). ArticleCASPubMed Google Scholar
Chantry, D., Turner, M., Abney, E. & Feldmann, M. Modulation of cytokine production by transforming growth factor-β. J. Immunol.142, 4295–4300 (1989). CASPubMed Google Scholar
Ye, S. M. & Johnson, R. W. An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation9, 183–192 (2001). ArticleCASPubMed Google Scholar
De Simone, R., Ajmone-Cat, M. A., Carnevale, D. & Minghetti, L. Activation of α7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J. Neuroinflammation2, 4 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cunningham, C. et al. Synaptic changes characterize early behavioural changes in the ME7 model of murine prion disease. Eur. J. Neurosci.17, 2147–2155 (2003). ArticleCASPubMed Google Scholar
Boche, D., Cunningham, C., Docagne, F., Scott, H. & Perry, V. H. TGFβ1 regulates the inflammatory response during chronic neurodegeneration. Neurobiol. Dis.22, 638–650 (2006). ArticleCASPubMed Google Scholar
Thackray, A. M., McKenzie, A. N., Klein, M. A., Lauder, A. & Bujdoso, R. Accelerated prion disease in the absence of interleukin-10. J. Virol.78, 13697–13707 (2004). ArticleCASPubMedPubMed Central Google Scholar
DiCarlo, G., Wilcock, D., Henderson, D., Gordon, M. & Morgan, D. Intrahippocampal LPS injections reduce Aβ load in APP+PS1 transgenic mice. Neurobiol. Aging22, 1007–1012 (2001). ArticleCASPubMed Google Scholar
Herber, D. L. et al. Time-dependent reduction in Aβ levels after intracranial LPS administration in APP transgenic mice. Exp. Neurol.190, 245–253 (2004). ArticleCASPubMed Google Scholar
Wilcock, D. M. et al. Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol. Dis.15, 11–20 (2004). ArticleCASPubMed Google Scholar
Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med.6, 916–919 (2000). ArticleCASPubMed Google Scholar
Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400, 173–177 (1999). ArticleCASPubMed Google Scholar
Perry, V. H., Newman, T. A. & Cunningham, C. The impact of systemic infection on the progression of neurodegenerative disease. Nature Rev. Neurosci.4, 103–112 (2003). ArticleCAS Google Scholar
Godbout, J. P. et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J.19, 1329–1331 (2005). ArticleCASPubMed Google Scholar
Perry, V. H., Matyszak, M. K. & Fearn, S. Altered antigen expression of microglia in the aged rodent CNS. Glia7, 60–67 (1993). ArticleCASPubMed Google Scholar
Godbout, J. P. & Johnson, R. W. Interleukin-6 in the aging brain. J. Neuroimmunol.147, 141–144 (2004). ArticleCASPubMed Google Scholar
Kyrkanides, S., O'Banion, M. K., Whiteley, P. E., Daeschner, J. C. & Olschowka, J. A. Enhanced glial activation and expression of specific CNS inflammation-related molecules in aged versus young rats following cortical stab injury. J. Neuroimmunol.119, 269–277 (2001). ArticleCASPubMed Google Scholar
Barrientos, R. M. et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol. Aging27, 723–732 (2006). ArticlePubMed Google Scholar
Lee, J., Chan, S. L. & Mattson, M. P. Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromolecular Med.2, 29–45 (2002). ArticleCASPubMed Google Scholar
Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N. & LaFerla, F. M. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci.25, 8843–8853 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, M. D., D'Aigle, T., Gowing, G., Julien, J. P. & Rivest, S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J. Neurosci.24, 1340–1349 (2004). ArticleCASPubMedPubMed Central Google Scholar
McCusker, J., Cole, M., Dendukuri, N., Belzile, E. & Primeau, F. Delirium in older medical inpatients and subsequent cognitive and functional status: a prospective study. Can. Med. Assoc. J.165, 575–583 (2001). CAS Google Scholar
Rahkonen, T., Luukkainen-Markkula, R., Paanila, S., Sivenius, J. & Sulkava, R. Delirium episode as a sign of undetected dementia among community dwelling elderly subjects: a 2 year follow up study. J. Neurol. Neurosurg. Psychiatry69, 519–521 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fick, D. M., Agostini, J. V. & Inouye, S. K. Delirium superimposed on dementia: a systematic review. J. Am. Geriatr. Soc.50, 1723–1732 (2002). ArticlePubMed Google Scholar
Dunn, N., Mullee, M., Perry, V. H. & Holmes, C. Association between dementia and infectious disease: evidence from a case–control study. Alzheimer Dis. Assoc. Disord.19, 91–94 (2005). ArticlePubMed Google Scholar
Engelhart, M. J. et al. Inflammatory proteins in plasma and the risk of dementia: The Rotterdam Study. Arch. Neurol.61, 668–672 (2004). ArticlePubMed Google Scholar
Tilvis, R. S. et al. Predictors of cognitive decline and mortality of aged people over a 10-year period. J. Gerontol. A59, 268–274 (2004). Article Google Scholar
Ott, A. et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology53, 1937–1942 (1999). ArticleCASPubMed Google Scholar
Andersen, K., Lolk, A., Kragh-Sorensen, P., Petersen, N. E. & Green, A. Depression and the risk of Alzheimer disease. Epidemiology16, 233–238 (2005). ArticlePubMed Google Scholar
Fleminger, S., Oliver, D. L., Lovestone, S., Rabe-Hesketh, S. & Giora, A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry74, 857–862 (2003). ArticleCASPubMedPubMed Central Google Scholar
Craig, D., Mirakhur, A., Hart, D. J., McIlroy, S. P. & Passmore, A. P. A cross-sectional study of neuropsychiatric symptoms in 435 patients with Alzheimer's disease. Am. J. Geriatr. Psychiatry13, 460–468 (2005). ArticlePubMed Google Scholar
Starkstein, S. E., Jorge, R., Mizrahi, R. & Robinson, R. G. A prospective longitudinal study of apathy in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry77, 8–11 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hope, T., Keene, J., Fairburn, C. G., Jacoby, R. & McShane, R. Natural history of behavioural changes and psychiatric symptoms in Alzheimer's disease. A longitudinal study. Br. J. Psychiatry174, 39–44 (1999). ArticleCASPubMed Google Scholar
Yip, A. G., Brayne, C. & Matthews, F. E. Risk factors for incident dementia in England and Wales: The Medical Research Council Cognitive Function and Ageing Study. A population-based nested case-control study. Age Ageing35, 154–160 (2006). ArticlePubMed Google Scholar
Robert, P. H. et al. Apathy in patients with mild cognitive impairment and the risk of developing dementia of Alzheimer's disease. A one-year follow-up study. Clin. Neurol. Neurosurg.108, 733–736 (2006). ArticlePubMed Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) 4th edn (American Psychiatric Association, Washington DC, 1994).
Clark, C. M. et al. Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: a clinical perspective of data from the Consortium to Establish a Registry for Alzheimer's Disease. Arch. Neurol.56, 857–862 (1999). ArticleCASPubMed Google Scholar
Holmes, C. & Lovestone, S. Long-term cognitive and functional decline in late onset Alzheimer's disease: therapeutic implications. Age Ageing32, 200–204 (2003). ArticlePubMed Google Scholar
Holmes, C. et al. Systemic infection, interleukin 1β, and cognitive decline in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry74, 788–789. (2003). ArticleCASPubMedPubMed Central Google Scholar
Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev.12, 123–137 (1988). ArticleCASPubMed Google Scholar
Blond, D., Campbell, S. J., Butchart, A. G., Perry, V. H. & Anthony, D. C. Differential induction of interleukin-1β and tumour necrosis factor-α may account for specific patterns of leukocyte recruitment in the brain. Brain Res.958, 89–99 (2002). ArticleCASPubMed Google Scholar