Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease (original) (raw)
Nikolich-Žugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nature Rev. Immunol.4, 123–132 (2004). ArticleCAS Google Scholar
Burstein, H. J., Shea, C. M. & Abbas, A. K. Aqueous antigens induce in vivo tolerance selectively in IL-2- and IFN-γ-producing (Th1) cells. J. Immunol.148, 3687–3691 (1992). CASPubMed Google Scholar
Critchfield, J. M. et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science263, 1139–1143 (1994). This study shows that high-dose peptide-induced tolerance leads to clonal deletion. ArticleCASPubMed Google Scholar
Gaur, A., Wiers, B., Liu, A., Rothbard, J. & Fathman, C. G. Amelioration of autoimmune encephalomyelitis by myelin basic protein synthetic peptide-induced anergy. Science258, 1491–1494 (1992). This study shows that high-dose peptide tolerance induces anergy in EAE. ArticleCASPubMed Google Scholar
Racke, M. K. et al. Intravenous antigen administration as a therapy for autoimmune demyelinating disease. Ann. Neurol.39, 46–56 (1996). ArticleCASPubMed Google Scholar
Pipeleers, D. et al. A view on β cell transplantation in diabetes. Ann. NY Acad. Sci.958, 69–76 (2002). ArticlePubMed Google Scholar
Judkowski, V. et al. Peptide specific amelioration of T cell mediated pathogenesis in murine type 1 diabetes. Clin. Immunol.113, 29–37 (2004). ArticleCASPubMed Google Scholar
Lieberman, S. M. et al. Identification of the β cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA100, 8384–8388 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mukherjee, R., Chaturvedi, P., Qin, H. Y. & Singh, B. CD4+CD25+ regulatory T cells generated in response to insulin B:9–23 peptide prevent adoptive transfer of diabetes by diabetogenic T cells. J. Autoimmun.21, 221–237 (2003). ArticleCASPubMed Google Scholar
Coon, B., An, L. L., Whitton, J. L. & von Herrath, M. G. DNA immunization to prevent autoimmune diabetes. J. Clin. Invest.104, 189–194 (1999). This paper reports the inhibition of type 1 diabetes by vaccination with insulin-encoding DNA. ArticleCASPubMedPubMed Central Google Scholar
Weaver, D. J. Jr, Liu, B. & Tisch, R. Plasmid DNAs encoding insulin and glutamic acid decarboxylase 65 have distinct effects on the progression of autoimmune diabetes in nonobese diabetic mice. J. Immunol.167, 586–592 (2001). ArticleCASPubMed Google Scholar
Chang, Y. et al. DNA vaccination with an insulin construct and a chimeric protein binding to both CTLA4 and CD40 ameliorates type 1 diabetes in NOD mice. Gene Ther.12, 1679–1685 (2005). ArticleCASPubMed Google Scholar
Smith, C. E., Eagar, T. N., Strominger, J. L. & Miller, S. D. Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA102, 9595–9600 (2005). This paper shows that high-dose intravenous peptide-induced tolerance can induce fatal anaphylaxis in various EAE models. ArticleCASPubMedPubMed Central Google Scholar
Genain, C. P. et al. Late complications of immune deviation therapy in a nonhuman primate. Science274, 2054–2057 (1996). ArticleCASPubMed Google Scholar
Katz, D. H., Bargatze, R. F., Bogowitz, C. A. & Katz, L. R. Regulation of IgE antibody production by serum molecules. IV. Complete Freund's adjuvant induces both enhancing and suppressive activities detectable in the serum of low and high responder mice. J. Immunol.122, 2184–2190 (1979). CASPubMed Google Scholar
Warren, K. G., Catz, I. & Wucherpfennig, K. W. Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J. Neurol. Sci.152, 31–38 (1997). ArticleCASPubMed Google Scholar
Pedotti, R. et al. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nature Immunol.2, 216–222 (2001). ArticleCAS Google Scholar
Mayer, L. & Shao, L. Therapeutic potential of oral tolerance. Nature Rev. Immunol.4, 407–419 (2004). ArticleCAS Google Scholar
Mowat, A. M., Strobel, S., Drummond, H. E. & Ferguson, A. Immunological responses to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology45, 105–113 (1982). CASPubMedPubMed Central Google Scholar
Faria, A. M. & Weiner, H. L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol.73, 153–264 (1999). ArticleCASPubMed Google Scholar
Friedman, A. & Weiner, H. L. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc. Natl Acad. Sci. USA91, 6688–6692 (1994). ArticleCASPubMedPubMed Central Google Scholar
Bitar, D. M. & Whitacre, C. C. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell. Immunol.112, 364–370 (1988). This paper provides the first demonstration of oral tolerance for the prevention of EAE. ArticleCASPubMed Google Scholar
Whitacre, C. C., Gienapp, I. E., Orosz, C. G. & Bitar, D. M. Oral tolerance in experimental autoimmune encephalomyelitis: III. Evidence for clonal anergy. J. Immunol.147, 2155–2163 (1991). CASPubMed Google Scholar
Khoury, S. J., Hancock, W. W. & Weiner, H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med.176, 1355–1364 (1992). ArticleCASPubMed Google Scholar
Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science265, 1237–1240 (1994). This study reports that oral tolerance induces TGFβ-producing TH3 cells. ArticleCASPubMed Google Scholar
Miller, A., Lider, O., Roberts, A. B., Sporn, M. B. & Weiner, H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc. Natl Acad. Sci. USA89, 421–425 (1992). ArticleCASPubMedPubMed Central Google Scholar
Mowat, A. M., Parker, L. A., Beacock-Sharp, H., Millington, O. R. & Chirdo, F. Oral tolerance: overview and historical perspectives. Ann. NY Acad. Sci.1029, 1–8 (2004). ArticleCASPubMed Google Scholar
Weiner, H. L. Current issues in the treatment of human diseases by mucosal tolerance. Ann. NY Acad. Sci.1029, 211–224 (2004). ArticleCASPubMed Google Scholar
Meyer, A. L., Benson, J. M., Gienapp, I. E., Cox, K. L. & Whitacre, C. C. Suppression of murine chronic relapsing experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. J. Immunol.157, 4230–4238 (1996). CASPubMed Google Scholar
Benson, J. M. et al. Oral administration of myelin basic protein is superior to myelin in suppressing established relapsing experimental autoimmune encephalomyelitis. J. Immunol.162, 6247–6254 (1999). CASPubMed Google Scholar
Bai, X. F. et al. Complexities of applying nasal tolerance induction as a therapy for ongoing relapsing experimental autoimmune encephalomyelitis (EAE) in DA rats. Clin. Exp. Immunol.111, 205–210 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kennedy, K. J., Smith, W. S., Miller, S. D. & Karpus, W. J. Induction of antigen-specific tolerance for the treatment of ongoing, relapsing autoimmune encephalomyelitis: a comparison between oral and peripheral tolerance. J. Immunol.159, 1036–1044 (1997). CASPubMed Google Scholar
Karpus, W. J., Kennedy, K. J., Smith, W. S. & Miller, S. D. Inhibition of relapsing experimental autoimmune encephalomyelitis in SJL mice by feeding the immunodominant PLP139–151 molecule. J. Neurosci. Res.45, 410–423 (1996). ArticleCASPubMed Google Scholar
Bai, X. F. et al. Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-β mRNA. J. Neuroimmunol.80, 65–75 (1997). ArticleCASPubMed Google Scholar
Slavin, A. J., Maron, R. & Weiner, H. L. Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Int. Immunol.13, 825–833 (2001). ArticleCASPubMed Google Scholar
Maron, R., Slavin, A. J., Hoffmann, E., Komagata, Y. & Weiner, H. L. Oral tolerance to copolymer 1 in myelin basic protein (MBP) TCR transgenic mice: cross-reactivity with MBP-specific TCR and differential induction of anti-inflammatory cytokines. Int. Immunol.14, 131–138 (2002). ArticleCASPubMed Google Scholar
Metzler, B. & Wraith, D. C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol.5, 1159–1165 (1993). This is a comparison of oral and nasal routes of peptide administration for the prevention of EAE. ArticleCASPubMed Google Scholar
Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science259, 1321–1324 (1993). This paper provides a description of the initial clinical trial that used orally administered myelin in patients with MS. ArticleCASPubMed Google Scholar
Miller, S. D., Wetzig, R. P. & Claman, H. N. The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J. Exp. Med.149, 758–773 (1979). This is the initial demonstration that antigen-pulsed, ECDI-fixed splenic APCs induce T-cell tolerance. ArticleCASPubMed Google Scholar
Sriram, S., Schwartz, G. & Steinman, L. Administration of myelin basic protein-coupled spleen cells prevents experimental allergic encephalitis. Cell. Immunol.75, 378–382 (1983). ArticleCASPubMed Google Scholar
Miller, S. D. et al. Evolution of the T cell repertoire during the course of experimental autoimmune encephalomyelitis. Immunol. Rev.144, 225–244 (1995). ArticleCASPubMed Google Scholar
Vandenbark, A. A. et al. Differential susceptibility of human Th1 versus Th2 cells to induction of anergy and apoptosis by ECDI/antigen-coupled antigen-presenting cells. Int. Immunol.12, 57–66 (2000). This paper shows that peptide-pulsed, ECDI-fixed PBLs induce anergy in MBP-specific human T-cell lines. ArticleCASPubMed Google Scholar
Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature358, 155–157 (1992). This is the initial description of epitope spreading in autoimmunity. ArticleCASPubMed Google Scholar
Vanderlugt, C. L. et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J. Immunol.164, 670–678 (2000). This reference demonstrates that tolerance to spread epitopes is required to inhibit progression of established relapsing EAE. ArticleCASPubMed Google Scholar
Smith, C. E. & Miller, S. D. Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities. J. Autoimmunity27, 218–231 (2006). ArticleCAS Google Scholar
Kennedy, M. K., Tan, L. J., Dal Canto, M. C. & Miller, S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. J. Immunol.145, 117–126 (1990). CASPubMed Google Scholar
Kennedy, M. K. et al. Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J. Immunol.144, 909–915 (1990). This is the initial demonstration that myelin-peptide-coupled cells can inhibit EAE induction. CASPubMed Google Scholar
Vandenbark, A. A., Vainiene, M., Ariail, K., Miller, S. D. & Offner, H. Prevention and treatment of relapsing autoimmune encephalomyelitis with myelin peptide-coupled splenocytes. J. Neurosci. Res.45, 430–438 (1996). ArticleCASPubMed Google Scholar
Su, X. M. & Sriram, S. Treatment of chronic relapsing experimental allergic encephalomyelitis with the intravenous administration of splenocytes coupled to encephalitogenic peptide 91–103 of myelin basic protein. J. Neuroimmunol.34, 181–190 (1991). ArticleCASPubMed Google Scholar
Tan, L. J., Kennedy, M. K. & Miller, S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J. Immunol.148, 2748–2755 (1992). CASPubMed Google Scholar
Miller, S. D., Tan, L. J., Pope, L., McRae, B. L. & Karpus, W. J. Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int. Rev. Immunol.9, 203–222 (1992). ArticleCASPubMed Google Scholar
Miller, S. D. & Karpus, W. J. The immunopathogenesis and regulation of T-cell mediated demyelinating diseases. Immunol. Today15, 356–361 (1994). ArticleCASPubMed Google Scholar
McRae, B. L., Vanderlugt, C. L., Dal Canto, M. C. & Miller, S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med.182, 75–85 (1995). This study provides the initial description of the functional pathological significance of epitope spreading to disease progression in relapsing EAE. ArticleCASPubMed Google Scholar
Miller, S. D. et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity3, 739–745 (1995). ArticleCASPubMed Google Scholar
Tan, L. J., Kennedy, M. K., Dal Canto, M. C. & Miller, S. D. Successful treatment of paralytic relapses in adoptive experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance. J. Immunol.147, 1797–1802 (1991). CASPubMed Google Scholar
McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med.11, 335–339 (2005). This reference shows that epitope spreading initiates in the CNS. ArticleCASPubMed Google Scholar
Bailey, S. L., Schreiner, B., McMahon, E. J. & Miller, S. D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nature Immunol.8, 172–180 (2007). This study shows that epitope spreading in the CNS is driven primarily by peripherally derived myeloid APCs presenting endogenous myelin antigens. ArticleCAS Google Scholar
Braley-Mullen, H., Tompson, J. G., Sharp, G. C. & Kyriakos, M. Suppression of experimental autoimmune thyroiditis in guinea pigs by pretreatment with thyroglobulin-coupled spleen cells. Cell. Immunol.51, 408–413 (1980). ArticleCASPubMed Google Scholar
Dua, H. S., Gregerson, D. S. & Donoso, L. A. Inhibition of experimental autoimmune uveitis by retinal photoreceptor antigens coupled to spleen cells. Cell. Immunol.139, 292–305 (1992). ArticleCASPubMed Google Scholar
Gregorian, S. K., Clark, L., Heber-Katz, E., Amento, E. P. & Rostami, A. Induction of peripheral tolerance with peptide-specific anergy in experimental autoimmune neuritis. Cell. Immunol.150, 298–310 (1993). ArticleCASPubMed Google Scholar
Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med.203, 2737–2747 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med.165, 302–319 (1987). ArticleCASPubMed Google Scholar
Eagar, T. N., Karandikar, N. J., Bluestone, J. & Miller, S. D. The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur. J. Immunol.32, 972–981 (2002). ArticleCASPubMed Google Scholar
Turley, D. M. & Miller, S. D. Peripheral tolerance Induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J. Immunol.178, 2212–2220 (2007). This study shows that ECDI-fixed-cell-induced tolerance works primarily by an indirect pathway of antigen re-presentation by host APCs. ArticleCASPubMed Google Scholar
Pope, L., Paterson, P. Y. & Miller, S. D. Antigen-specific inhibition of the adoptive transfer of experimental autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol.37, 177–190 (1992). ArticleCASPubMed Google Scholar
Bilsborough, J., George, T. C., Norment, A. & Viney, J. L. Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology108, 481–492 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood100, 383–390 (2002). ArticleCASPubMed Google Scholar
Young, D. A. et al. IL-4, IL-10, IL-13, and TGF-β from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J. Immunol.164, 3563–3572 (2000). ArticleCASPubMed Google Scholar
Nicholson, L. B., Murtaza, A., Hafler, B. P., Sette, A. & Kuchroo, V. K. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc. Natl Acad. Sci. USA94, 9279–9284 (1997). ArticleCASPubMedPubMed Central Google Scholar
Samson, M. F. & Smilek, D. E. Reversal of acute experimental autoimmune encephalomyelitis and prevention of relapses by treatment with a myelin basic protein peptide analogue modified to form long-lived peptide-MHC complexes. J. Immunol.155, 2737–2746 (1995). CASPubMed Google Scholar
Wraith, D. C., Smilek, D. E., Mitchell, D. J., Steinman, L. & McDevitt, H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell59, 247–255 (1989). ArticleCASPubMed Google Scholar
Nicholson, L. B. & Kuchroo, V. K. T cell recognition of self and altered self antigens. Crit. Rev. Immunol.17, 449–462 (1997). CASPubMed Google Scholar
Karin, N., Mitchell, D. J., Brocke, S., Ling, N. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon γ and tumor necrosis factor α production. J. Exp. Med.180, 2227–2237 (1994). ArticleCASPubMed Google Scholar
Nicholson, L. B., Greer, J. M., Sobel, R. A., Lees, M. B. & Kuchroo, V. K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity3, 397–405 (1995). This study shows that APL therapy induces immune deviation in prevention of EAE. ArticleCASPubMed Google Scholar
Aharoni, R., Teitelbaum, D., Arnon, R. & Sela, M. Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl Acad. Sci. USA96, 634–639 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ruiz, P. J. et al. Immunomodulation of experimental autoimmune encephalomyelitis with ordered peptides based on MHC–TCR binding motifs. J. Immunol.167, 2688–2693 (2001). ArticleCASPubMed Google Scholar
Illes, Z. et al. Modified amino acid copolymers suppress myelin basic protein 85–99-induced encephalomyelitis in humanized mice through different effects on T cells. Proc. Natl Acad. Sci. USA101, 11749–11754 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stern, J. N. et al. Peptide 15-mers of defined sequence that substitute for random amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA102, 1620–1625 (2005). ArticleCASPubMedPubMed Central Google Scholar
Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial—type 1. Diabetes Care28, 1068–1076 (2005). ArticleCASPubMed Google Scholar
Chaillous, L. et al. Oral insulin administration and residual β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet356, 545–549 (2000). ArticleCASPubMed Google Scholar
Ergun-Longmire, B. et al. Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann. NY Acad. Sci.1029, 260–277 (2004). ArticleCASPubMed Google Scholar
Monetini, L. et al. Cytokine profile and insulin antibody IgG subclasses in patients with recent onset type 1 diabetes treated with oral insulin. Diabetologia47, 1795–1802 (2004). ArticleCASPubMed Google Scholar
Staeva-Vieira, T., Peakman, M. & von Herrath, M. Translational mini-review series on type 1 diabetes: Immune-based therapeutic approaches for type 1 diabetes. Clin. Exp. Immunol.148, 17–31 (2007). ArticleCASPubMedPubMed Central Google Scholar
Barnett, M. L. et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum.41, 290–297 (1998). ArticleCASPubMed Google Scholar
Prakken, B. J. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl Acad. Sci. USA101, 4228–4233 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med.6, 1167–1175 (2000). This paper demonstrates that an MBP APL leads to exacerbated clinical MS. ArticleCASPubMed Google Scholar
Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nature Med.6, 1176–1182 (2000). ArticleCASPubMed Google Scholar
Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology45, 1268–1276 (1995). ArticleCASPubMed Google Scholar
Cohen, J. A. et al. Randomized, double-blind, dose-comparison study of glatiramer acetate in relapsing-remitting MS. Neurology68, 939–944 (2007). ArticleCASPubMed Google Scholar
Alleva, D. G. et al. Immunomodulation in type 1 diabetes by NBI-6024, an altered peptide ligand of the insulin B epitope. Scand. J. Immunol.63, 59–69 (2006). ArticleCASPubMed Google Scholar
Bielekova, B. et al. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J. Immunol.172, 3893–3904 (2004). ArticleCASPubMed Google Scholar
Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA91, 123–127 (1994). ArticleCASPubMedPubMed Central Google Scholar
Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nature Rev. Immunol.3, 123–132 (2003). ArticleCAS Google Scholar
Kohm, A. P. et al. Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J. Immunol.174, 4525–4534 (2005). ArticleCASPubMed Google Scholar
Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med.346, 1692–1698 (2002). ArticleCASPubMed Google Scholar
Pozzilli, P. et al. No effect of oral insulin on residual β-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia43, 1000–1004 (2000). ArticleCASPubMed Google Scholar
Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med.352, 2598–2608 (2005). ArticleCASPubMed Google Scholar
Utset, T. O. et al. Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J. Rheumatol.29, 1907–1913 (2002). CASPubMed Google Scholar
Herold, K. C. et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala-Ala). J. Clin. Invest.111, 409–418 (2003). ArticleCASPubMedPubMed Central Google Scholar
Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med.9, 1202–1208 (2003). ArticleCASPubMed Google Scholar
Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature356, 63–66 (1992). ArticleCASPubMed Google Scholar
Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med.348, 15–23 (2003). ArticleCASPubMed Google Scholar
Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol.155, 5003–5010 (1995). CASPubMed Google Scholar
Ruddle, N. H. et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J. Exp. Med.172, 1193–1200 (1990). ArticleCASPubMed Google Scholar
Khalili, K., White, M. K., Lublin, F., Ferrante, P. & Berger, J. R. Reactivation of JC virus and development of PML in patients with multiple sclerosis. Neurology68, 985–990 (2007). ArticleCASPubMed Google Scholar
Macián, F., Lopéz-Rodríguez, C. & Rao, A. Partners in transcription: NFAT and AP-1. Oncogene20, 2476–2489 (2001). ArticlePubMed Google Scholar
Heissmeyer, V. & Rao, A. E3 ligases in T cell anergy—turning immune responses into tolerance. Sci. STKE2004, pe29 (2004). PubMed Google Scholar
Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell126, 375–387 (2006). ArticleCASPubMed Google Scholar
Jeon, M. S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity.21, 167–177 (2004). ArticleCASPubMed Google Scholar
Seroogy, C. M. et al. The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J. Immunol.173, 79–85 (2004). ArticleCASPubMed Google Scholar
Anandasabapathy, N. et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity.18, 535–547 (2003). ArticleCASPubMed Google Scholar
Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA95, 15547–15552 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ohashi, P. S. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nature Rev. Immunol.2, 427–438 (2002). ArticleCAS Google Scholar
Raz, I. et al. β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet358, 1749–1753 (2001). ArticleCASPubMed Google Scholar
Raz, I. et al. Treatment of new-onset type 1 diabetes with peptide DiaPep277 is safe and associated with preserved β-cell function: extension of a randomized, double-blind, phase II trial. Diabetes. Metab. Res. Rev.23, 292–298 (2007). ArticleCASPubMed Google Scholar
Bourdette, D. N. et al. A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult. Scler.11, 552–561 (2005). ArticleCASPubMed Google Scholar