The origin and application of experimental autoimmune encephalomyelitis (original) (raw)
Gold, R., Linington, C. & Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain129, 1953–1971 (2006). ArticlePubMed Google Scholar
Sriram, S. & Steiner, I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol.58, 939–945 (2005). ArticleCASPubMed Google Scholar
Stuart, G. & Krikorian, K. S. The neuro-paralytic accidents of anti-rabies treatment. Ann. Trop. Med.22, 327–377 (1928). Article Google Scholar
Balaguer, D. D. G. Un caso de rabia paralítica. Gaceta Médica Catalana11, 45–57 (1888)(in Spanish). Google Scholar
Bassoe, P. & Grinker, R. R. Human rabies and rabies vaccine encephalomyelitis. Arch. Neurol. Psych.4, 1138–1160 (1930). Article Google Scholar
Koritschoner, R. & Schweinburg, F. Klinisch und experimentelle beobachtungen über Lähmungen nach Wutschutzimpfung. Z. Immunitats Forsh42, 217–283 (1925)(in German). Google Scholar
Stuart, G. & Krikorian, K. S. A fatal neuro-paralytic accident of antirabies treatment. Lancet1, 1123–1125 (1930). Article Google Scholar
Rivers, T. M., Sprunt, D. H. & Berry, G. P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J. Exp. Med.58, 39–53 (1933). ArticleCASPubMedPubMed Central Google Scholar
Rivers, T. M. & Schwentker, F. F. Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J. Exp. Med.61, 689–702 (1935). ArticleCASPubMedPubMed Central Google Scholar
Schwentker, F. F. & Rivers, T. M. The antibody reseponse of rabbits to injection of emulsions and extracts of homologous brain. J. Exp. Med.60, 559–574 (1934). ArticleCASPubMedPubMed Central Google Scholar
Freund, J. & McDermott, K. Sensitisation to horse serum by means of adjuvants. Proc. Soc. Exp. Biol.49, 548–553 (1942). ArticleCAS Google Scholar
Kabat, E. A., Wolf, A. & Bezer, A. E. The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J. Exp. Med.85, 117–130 (1947). ArticleCASPubMedPubMed Central Google Scholar
Morgan, I. M. Allergic encephalomyelitis in monkeys in response to injection of normal monkey nervous tissue. J. Exp. Med.85, 131–140 (1947). ArticleCASPubMedPubMed Central Google Scholar
Freund, J., Stern, E. R. & Pisini, T. M. Isoallergic encephalomyelitis and radiculitis in guinea pigs after one injection of brain and mycobacteria in water-in-oil emulsion. J. Immunol.57, 179–194 (1947). CASPubMed Google Scholar
Wolf, A., Kabat, E. A. & Bezer, A. E. The pathology of acute disseminated encephalomyelitis produced experimentally in the rhesus monkey and its resemblance to human demyelinating disease. J. Neuropath. Exp. Neurol.6, 333–357 (1947). ArticleCASPubMed Google Scholar
Morrison, L. R. Disseminated encephalomyelitis experimentally produced by the use of homologous antigen. Arch. Neurol. Psychiat.58, 391–416 (1947). ArticleCASPubMed Google Scholar
Lumsden, C. E. Experimental allergic encephalomyelitis II — on the nature of the encephalitogenic agent. Brain27, 517–537 (1949). Article Google Scholar
Lipton, M. M. & Freund, J. Encephalomyelitis in the rat following intracutaneous injection of central nervous system tissue with adjuvant. Proc. Soc. Exp. Biol. NY81, 260–261 (1952). ArticleCAS Google Scholar
Tal, C., Laufer, A. & Behar, A. J. An experimental demyelinative disease in the Syrian hamster. Br. J. Exp. Pathol.39, 158–164 (1958). CASPubMedPubMed Central Google Scholar
Thomas, L., Paterson, P. Y. & Smithwick, B. Acute disseminated encephalomyelitis following immunization with homologous brain extracts: I. Studies on the role of a circulating antibody in the production of the condition in dogs. J. Exp. Med.92, 133–152 (1950). ArticleCASPubMedPubMed Central Google Scholar
Innes, J. R. M. Experimental allergic encephalitis: attempts to produce the disease in sheep and goats. J. Comp. Path.61, 241–250 (1951). ArticleCASPubMed Google Scholar
Genain, C. P. et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J. Clin. Invest.96, 2966–2974 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ranzenhofer, E. R., Lipton, M. M. & Steigman, A. J. Effect of homologous spinal cord in Freund's adjuvant on cockerel comb, testicular and body growth. Proc. Soc. Exp. Biol. NY99, 280–282 (1958). ArticleCAS Google Scholar
Adams, R. D. & Kubik, C. S. The morbid anatomy of the demyelinative diseases. Am. J. Med.12, 510–546 (1952). ArticleCASPubMed Google Scholar
Ferraro, A. Pathology of demyelinating diseases as an allergic reaction of the brain. Arch. Neurol. Psych.4, 443–483 (1944). Article Google Scholar
Steinman, L. & Zamvil, S. S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol.60, 12–21 (2006). ArticleCASPubMed Google Scholar
Teitelbaum, D., Meshorer, A., Hirshfeld, T., Arnon, R. & Sela, M. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur. J. Immunol.1, 242–248 (1971). ArticleCASPubMed Google Scholar
Lublin, F. D., Lavasa, M., Viti, C. & Knobler, R. L. Suppression of acute and relapsing experimental allergic encephalomyelitis with mitoxantrone. Clin. Immunol. Immunopathol.45, 122–128 (1987). ArticleCASPubMed Google Scholar
Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature356, 63–66 (1992). ArticleCASPubMed Google Scholar
Langer-Gould, A., Atlas, S. W., Green, A. J., Bollen, A. W. & Pelletier, D. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N. Engl. J. Med.353, 375–381 (2005). ArticleCASPubMed Google Scholar
Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med.6, 1167–1175 (2000). ArticleCASPubMed Google Scholar
van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology47, 1531–1534 (1996). ArticleCASPubMed Google Scholar
Waksman, B. H., Porter, H., Lees, M. D., Adams, R. D. & Folch, J. A study of the chemical nature of components of bovine white matter effective in producing allergic encephalomyelitis in the rabbit. J. Exp. Med.100, 451–471 (1954). ArticleCASPubMedPubMed Central Google Scholar
Ferraro, A. & Roizin, L. Production of experimental encephalomyelitis with calcium acetate compound extracted from brain tissue. J. Neuropath. Exp. Neurol.10, 394–407 (1951). ArticleCAS Google Scholar
Laatsch, R. H., Kies, M. W., Gordon, S. & Alvord, E. C. Jr. The encephalomyelitic activity of myelin isolated by ultracentrifugation. J. Exp. Med.115, 777–788 (1962). ArticleCASPubMedPubMed Central Google Scholar
Einstein, E. R., Robertson, D. M., DiCaprio, J. M. & Moore, W. The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity. J. Neurochem.9, 353–361 (1962). ArticleCASPubMed Google Scholar
Kibler, R. F. et al. Immune response of Lewis rats to peptide C1 (residues 68–88) of guinea pig and rat myelin basic proteins. J. Exp. Med.146, 1323–1331 (1977). ArticleCASPubMed Google Scholar
Fritz, R. B., Chou, C. H. & McFarlin, D. E. Induction of experimental allergic encephalomyelitis in PL/J and (SJL/J × PL/J)F1 mice by myelin basic protein and its peptides: localization of a second encephalitogenic determinant. J. Immunol.130, 191–194 (1983). CASPubMed Google Scholar
Fritz, R. B., Skeen, M. J., Chou, C. H., Garcia, M. & Egorov, I. K. Major histocompatibility complex-linked control of the murine immune response to myelin basic protein. J. Immunol.134, 2328–2332 (1985). CASPubMed Google Scholar
Zamvil, S. S. et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature324, 258–260 (1986). ArticleCASPubMed Google Scholar
Zamvil, S. S. et al. Predominant expression of a T cell receptor Vβ gene subfamily in autoimmune encephalomyelitis. J. Exp. Med.167, 1586–1596 (1988). ArticleCASPubMed Google Scholar
Acha-Orbea, H. et al. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell54, 263–273 (1988). ArticleCASPubMed Google Scholar
Burns, F. R. et al. Both rat and mouse T cell receptors specific for the encephalitogenic determinant of myelin basic protein use similar V α and V β chain genes even though the major histocompatibility complex and encephalitogenic determinants being recognized are different. J. Exp. Med.169, 27–39 (1989). ArticleCASPubMed Google Scholar
Heber-Katz, E. & Acha-Orbea, H. The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunol. Today10, 164–169 (1989). ArticleCASPubMed Google Scholar
Sakai, K. et al. Involvement of distinct murine T-cell receptors in the autoimmune encephalitogenic response to nested epitopes of myelin basic protein. Proc. Natl Acad. Sci. USA85, 8608–8612 (1988). ArticleCASPubMedPubMed Central Google Scholar
Behlke, M. A., Chou, H. S., Huppi, K. & Loh, D. Y. Murine T-cell receptor mutants with deletions of βchain variable region genes. Proc. Natl Acad. Sci. USA83, 767–771 (1986). ArticleCASPubMedPubMed Central Google Scholar
Wraith, D. C., Smilek, D. E., Mitchell, D. J., Steinman, L. & McDevitt, H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell59, 247–255 (1989). ArticleCASPubMed Google Scholar
Sakai, K. et al. Prevention of experimental encephalomyelitis with peptides that block interaction of T cells with major histocompatibility complex proteins. Proc. Natl Acad. Sci. USA86, 9470–9474 (1989). ArticleCASPubMedPubMed Central Google Scholar
Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Med.6, 1176–1182 (2000). ArticleCASPubMed Google Scholar
Crowe, P. D., Qin, Y., Conlon, P. J. & Antel, J. P. NBI-5788, an altered MBP83–99 peptide, induces a T-helper 2-like immune response in multiple sclerosis patients. Ann. Neurol.48, 758–765 (2000). ArticleCASPubMed Google Scholar
Lyons, G. A. Letter to shareholders, Neurocrine Biosciences Annual Report [online], (2003).
Sharma, S. D. et al. Antigen-specific therapy of experimental allergic encephalomyelitis by soluble class II major histocompatibility complex-peptide complexes. Proc. Natl Acad. Sci. USA88, 11465–11469 (1991). ArticleCASPubMedPubMed Central Google Scholar
Spack, E. G. Antigen-specific therapies for the treatment of multiple sclerosis: a clinical trial update. Expert Opin. Investig. Drugs6, 1715–1727 (1997). ArticleCASPubMed Google Scholar
Goodkin, D. E. et al. A phase I trial of solubilized DR2:MBP84–102 (AG284) in multiple sclerosis. Neurology54, 1414–1420 (2000). ArticleCASPubMed Google Scholar
Warren, K. G., Catz, I., Ferenczi, L. Z. & Krantz, M. J. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur. J. Neurol.13, 887–895 (2006). ArticleCASPubMed Google Scholar
Bornstein, M. B. et al. A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis. N. Engl. J. Med.317, 408–414 (1987). ArticleCASPubMed Google Scholar
Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology45, 1268–1276 (1995). ArticleCASPubMed Google Scholar
Racke, M. K., Martin, R., McFarland, H. & Fritz, R. B. Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. J. Neuroimmunol.37, 75–84 (1992). ArticleCASPubMed Google Scholar
Kies, M. W. Panel discussion on species variability and multiple antigens in EAE: summary statement. Ann. NY Acad. Sci.122, 242–244 (1965). ArticleCASPubMed Google Scholar
Steinman, L. The coming of age for antigen-specific therapy of multiple sclerosis. Eur. J. Neurol.13, 793–794 (2006). ArticleCASPubMed Google Scholar
Kuerten S. et al. MBP–PLP fusion protein-induced EAE in C57BL/6 mice. J. Neuroimmunol.177, 99–111 (2006). ArticleCASPubMed Google Scholar
Rogers, J., Strohmeyer, R., Kovelowski, C. J. & Li, R. Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia40, 260–269 (2002). ArticlePubMed Google Scholar
Esch, T. R., Miskimins, R. & Heber-Katz, E. CAT induces encephalomyelitis in MBP-CAT transgenic mice expressing CAT in oligodendrocytes. Transgene1, 11–18 (1993). Google Scholar
Hemachudha, T. et al. Myelin basic protein as an encephalitogen in encephalomyelitis and polyneuritis following rabies vaccination. N. Engl. J. Med.316, 369–374 (1987). ArticleCASPubMed Google Scholar
Cao, Y. et al. Induction of experimental autoimmune encephalomyelitis in transgenic mice expressing ovalbumin in oligodendrocytes. Eur. J. Immunol.36, 207–215 (2006). ArticleCASPubMed Google Scholar
Levine, S. & Sowinski, R. Experimental allergic encephalomyelitis in inbred and outbred mice. J. Immunol.110, 139–143 (1973). CASPubMed Google Scholar
Eylar, E. H., Caccam, J., Jackson, J. J., Westall, F. C. & Robinson, A. B. Experimental allergic encephalomyelitis: synthesis of disease-inducing site of the basic protein. Science168, 1220–1223 (1970). ArticleCASPubMed Google Scholar
Shapira, R., Chou, F. C., McKneally, S., Urban, E. & Kibler, R. F. Biological activity and synthesis of an encephalitogenic determinant. Science173, 736–738 (1971). ArticleCASPubMed Google Scholar
Chou, C. H., Chou, F. C., Kowalski, T. J., Shapira, R. & Kibler, R. F. The major site of guinea-pig myelin basic protein encephalitogenic in Lewis rats. J. Neurochem.28, 115–119 (1977). ArticleCASPubMed Google Scholar
Pettinelli, C. B., Fritz, R. B., Chou, C. H. & McFarlin, D. E. Encephalitogenic activity of guinea pig myelin basic protein in the SJL mouse. J. Immunol.129, 1209–1211 (1982). CASPubMed Google Scholar
Sakai, K. et al. Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J. Neuroimmunol.19, 21–32 (1988). ArticleCASPubMed Google Scholar
Fritz, R. B., Chou, C. H. & McFarlin, D. E. Relapsing murine experimental allergic encephalomyelitis induced by myelin basic protein. J. Immunol.130, 1024–1026 (1983). CASPubMed Google Scholar
Lennon, V. A., Wilks, A. V. & Carnegie, P. R. Immunologic properties of the main encephalitogenic peptide from the basic protein of human myelin. J. Immunol.105, 1223–1230 (1970). CASPubMed Google Scholar
Fujinami, R. S. & Oldstone, M. B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science230, 1043–1045 (1985). ArticleCASPubMed Google Scholar
Goldstein, N. P., Kolb, L. C., Mason, H. L., Sayre, G. P. & Karlson, A. G. Relationship of homologous brain proteolipid to allergic encephalomyelitis in guinea pigs. Neurology3, 609–614 (1953). ArticleCASPubMed Google Scholar
Furlan, R. et al. Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain126, 285–291 (2003). ArticlePubMed Google Scholar
Pellkofer, H. et al. Modelling paraneoplastic CNS disease: T-cells specific for the onconeuronal antigen PNMA1 mediate autoimmune encephalomyelitis in the rat. Brain127, 1822–1830 (2004). ArticlePubMed Google Scholar
Kojima, K. et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J. Exp. Med.180, 817–829 (1994). ArticleCASPubMed Google Scholar
Linington, C. et al. T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur. J. Immunol.23, 1364–1372 (1993). ArticleCASPubMed Google Scholar
Amor, S. et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J. Immunol.153, 4349–4356 (1994). CASPubMed Google Scholar
Kaye, J. F. et al. The central nervous system-specific myelin oligodendrocytic basic protein (MOBP) is encephalitogenic and a potential target antigen in multiple sclerosis (MS). J. Neuroimmunol.102, 189–198 (2000). ArticleCASPubMed Google Scholar
Zamvil, S. et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature317, 355–358 (1985). ArticleCASPubMed Google Scholar
Kabat, E. A., Wolf, A., Bezer, A. E. Rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of brain tissue with adjuvants. Science104, 362–363 (1946). ArticlePubMed Google Scholar
Lipton, M. M. & Freund, J. The transfer of experimental allergic encephalomyelitis in the rat by means of parabiosis. J. Immunol.71, 380–384 (1953). CASPubMed Google Scholar
Waksman, B. H., Arbouys, S. & Arnason, B. G. The use of specific “lymphocyte” antisera to inhibit hypersensitive reactions of the “delayed” type. J. Exp. Med.114, 997–1022 (1961). ArticleCASPubMedPubMed Central Google Scholar
Ben-Nun, A., Wekerle, H. & Cohen, I. R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol.11, 195–199 (1981). ArticleCASPubMed Google Scholar
Schluesener, H. J., Sobel, R. A., Linington, C. & Weiner, H. L. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J. Immunol.139, 4016–4021 (1987). CASPubMed Google Scholar
Fierz, W. et al. Synergism in the pathogenesis of EAE induced by an MBP-specific T-cell line and monoclonal antibodies to galactocerebroside or a myelin oligodendroglial glycoprotein. Ann. NY Acad. Sci.540, 360–363 (1988). ArticleCASPubMed Google Scholar
Jiang, H., Zhang, S. I. & Pernis, B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science256, 1213–1215 (1992). ArticleCASPubMed Google Scholar
Koh, D. R. et al. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−/− mice. Science256, 1210–1213 (1992). ArticleCASPubMed Google Scholar
Genain, C. P. et al. In healthy primates, circulating autoreactive T cells mediate autoimmune disease. J. Clin. Invest.94, 1339–1345 (1994). ArticleCASPubMedPubMed Central Google Scholar
Elliott, J. I., Douek, D. C. & Altmann, D. M. Mice lacking αβ+ T cells are resistant to the induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol.70, 139–144 (1996). ArticleCASPubMed Google Scholar
Nataf, S., Carroll, S. L., Wetsel, R. A., Szalai, A. J. & Barnum, S. R. Attenuation of experimental autoimmune demyelination in complement-deficient mice. J. Immunol.165, 5867–5873 (2000). ArticleCASPubMed Google Scholar