Viral evasion and subversion of pattern-recognition receptor signalling (original) (raw)
Sadler, A. J. & Williams, B. R. Interferon-inducible antiviral effectors. Nature Rev. Immunol.8, 559–568 (2008). CAS Google Scholar
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989). CASPubMed Google Scholar
Ishii, K. J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nature Immunol.7, 40–48 (2006). CAS Google Scholar
Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature448, 501–505 (2007). CASPubMed Google Scholar
Wang, Z. et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc. Natl Acad. Sci. USA105, 5477–5482 (2008). CASPubMedPubMed Central Google Scholar
Jin, M. S. & Lee, J. O. Structures of TLR-ligand complexes. Curr. Opin. Immunol.29, 182–191 (2008). CAS Google Scholar
Saito, T. & Gale, M. Jr. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med.205, 1523–1527 (2008). CASPubMedPubMed Central Google Scholar
Takeuchi, O. & Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol.20, 17–22 (2008). CASPubMed Google Scholar
O'Neill, L. A. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity29, 12–20 (2008). CASPubMed Google Scholar
Zampieri, C. A., Sullivan, N. J. & Nabel, G. J. Immunopathology of highly virulent pathogens: insights from Ebola virus. Nature Immunol.8, 1159–1164 (2007). CAS Google Scholar
Hartman, A. L., Ling, L., Nichol, S. T. & Hibberd, M. L. Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J. Virol.82, 5348–5358 (2008). CASPubMedPubMed Central Google Scholar
Beutler, B. et al. Genetic analysis of resistance to viral infection. Nature Rev. Immunol.7, 753–766 (2007). CAS Google Scholar
Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol.1, 398–401 (2000). CAS Google Scholar
Bowie, A. et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl Acad. Sci. USA97, 10162–10167 (2000). This is the first demonstration of viral proteins that inhibit TLRs. CASPubMedPubMed Central Google Scholar
Janeway, C. Jr. & Medzhitov, R. Viral interference with IL-1 and toll signaling. Proc. Natl Acad. Sci. USA97, 10682–10683 (2000). CASPubMedPubMed Central Google Scholar
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). CASPubMed Google Scholar
Edelmann, K. H. et al. Does Toll-like receptor 3 play a biological role in virus infections? Virology322, 231–238 (2004). CASPubMed Google Scholar
Schroder, M. & Bowie, A. G. TLR3 in antiviral immunity: key player or bystander? Trends Immunol.26, 462–468 (2005). PubMed Google Scholar
Vercammen, E., Staal, J. & Beyaert, R. Sensing of viral infection and activation of innate immunity by Toll-like receptor 3. Clin. Microbiol Rev.21, 13–25 (2008). CASPubMedPubMed Central Google Scholar
Quintana-Murci, L., Alcais, A., Abel, L. & Casanova, J.-L. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nature Immunol.8, 1165–1171 (2007). CAS Google Scholar
Bowie, A. G. Translational mini-review series on Toll-like receptors: recent advances in understanding the role of Toll-like receptors in anti-viral immunity. Clin. Exp. Immunol.147, 217–226 (2007). CASPubMedPubMed Central Google Scholar
Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med.198, 513–520 (2003). CASPubMedPubMed Central Google Scholar
Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood103, 1433–1437 (2004). CASPubMed Google Scholar
Jung, A. et al. Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces a cytotoxic T-cell response via MyD88. J. Virol.82, 196–206 (2008). CASPubMed Google Scholar
O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol.7, 353–364 (2007). CAS Google Scholar
Pobezinskaya, Y. L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nature Immunol.9, 1047–1054 (2008). CAS Google Scholar
Michallet, M. C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity28, 651–661 (2008). CASPubMed Google Scholar
Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nature Immunol.9, 1037–1046 (2008). CAS Google Scholar
Haga, I. R. & Bowie, A. G. Evasion of innate immunity by vaccinia virus. Parasitology130, S11–S25 (2005). CASPubMed Google Scholar
Hurst, T. & Bowie, A. G. Innate immune signaling pathways: lessons from vaccinia virus. Future Virol.3, 147–156 (2008). CAS Google Scholar
Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like–interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med.201, 1007–1018 (2005). This study shows that targeting of TIR-domain-containing adaptors by a VACV protein contributes to virulence, which predicts that TLRs have a role in host responses against poxviruses. CASPubMedPubMed Central Google Scholar
Carty, M. et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nature Immunol.7, 1074–1081 (2006). CAS Google Scholar
Newman, R. M., Salunkhe, P., Godzik, A. & Reed, J. C. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect. Immun.74, 594–601 (2006). CASPubMedPubMed Central Google Scholar
Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature Med.14, 399–406 (2008). CASPubMed Google Scholar
Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA102, 2992–2997 (2005). This is the first demonstration that HCV can target TLR3 by using the viral protease NS3–4A to cleave and disable TRIF.
Abe, T. et al. Hepatitis C virus nonstructural protein 5A modulates the Toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J. Virol.81, 8953–8966 (2007). CASPubMedPubMed Central Google Scholar
Harte, M. T. et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med.197, 343–351 (2003). CASPubMedPubMed Central Google Scholar
Keating, S. E., Maloney, G. M., Moran, E. M. & Bowie, A. G. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFκB via activation of TRAF6 ubiquitination. J. Biol. Chem.282, 33435–33443 (2007). This study shows that IRAK2 has a role in TLR-mediated NFκB activation, as a VACV protein potently inhibited NFκB by binding to IRAK2. CASPubMed Google Scholar
Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nature Immunol.9, 684–691 (2008). This study characterizes IRAK2-deficient mice and confirms the important role of IRAK2 in NFκB activation. CAS Google Scholar
Datta, A., Sinha-Datta, U., Dhillon, N. K., Buch, S. & Nicot, C. The HTLV-I p30 interferes with TLR4 signaling and modulates the release of pro- and anti-inflammatory cytokines from human macrophages. J. Biol. Chem.281, 23414–23424 (2006). CASPubMed Google Scholar
Wilson, J. R., de Sessions, P. F., Leon, M. A. & Scholle, F. West Nile Virus nonstructural protein 1 inhibits TLR-3 signal transduction. J. Virol.82, 8262–8271 (2008). CASPubMedPubMed Central Google Scholar
Macdonald, A. & Harris, M. Hepatitis C virus NS5A: tales of a promiscuous protein. J. Gen. Virol.85, 2485–2502 (2004). CASPubMed Google Scholar
Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol.5, 730–737 (2004). CAS Google Scholar
Yoneyama, M. et al. Shared and unique functions of the DExD/H-Box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol.175, 2851–2858 (2005). CASPubMed Google Scholar
Andrejeva, J. et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, MDA-5, and inhibit its activation of the _IFN_-β promoter. Proc. Natl Acad. Sci. USA101, 17264–17269 (2004). CASPubMedPubMed Central Google Scholar
Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature Immunol.6, 981–988 (2005). CAS Google Scholar
Seth, R. B., Sun, L., Ea, C.-K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell122, 669–682 (2005). CASPubMed Google Scholar
Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437, 1167–1172 (2005). This study reveals that the target of the HCV protease NS3–4A in the RIG-I pathway is the RIG-I adaptor IPS1. CASPubMed Google Scholar
Xu, L.-G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell19, 727–740 (2005). CASPubMed Google Scholar
Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature455, 674–678 (2008). CASPubMedPubMed Central Google Scholar
Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science314, 997–1001 (2006). CASPubMed Google Scholar
Hornung, V. et al. 5′-triphosphate RNA is the ligand for RIG-I. Science314, 994–997 (2006). References 51 and 52 show that the ligand for RIG-I is ssRNA with a 5′-triphosphate, and this was discovered partly based on the analysis of the mechanism by which influenza virus protein NS1 inhibits RIG-I. PubMed Google Scholar
Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell29, 169–179 (2008). CASPubMed Google Scholar
Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature454, 523–527 (2008). CASPubMedPubMed Central Google Scholar
Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med.205, 1601–1610 (2008). CASPubMedPubMed Central Google Scholar
Gitlin, L. et al. Essential role of MDA-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl Acad. Sci. USA103, 8459–8464 (2006). CASPubMedPubMed Central Google Scholar
Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature441, 101–105 (2006). CASPubMed Google Scholar
Plotch, S. J., Bouloy, M., Ulmanen, I. & Krug, R. M. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell23, 847–858 (1981). CASPubMed Google Scholar
Habjan, M. et al. Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE3, e2032 (2008). PubMedPubMed Central Google Scholar
Flanegan, J. B., Petterson, R. F., Ambros, V., Hewlett, N. J. & Baltimore, D. Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc. Natl Acad. Sci. USA74, 961–965 (1977). CASPubMedPubMed Central Google Scholar
Lee, Y. F., Nomoto, A., Detjen, B. M. & Wimmer, E. A protein covalently linked to poliovirus genome RNA. Proc. Natl Acad. Sci. USA74, 59–63 (1977). CASPubMedPubMed Central Google Scholar
Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol.80, 5059–5064 (2006). CASPubMedPubMed Central Google Scholar
Haasnoot, J. et al. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog.3, e86 (2007). PubMedPubMed Central Google Scholar
Weeks, K. M., Ampe, C., Schultz, S. C., Steitz, T. A. & Crothers, D. M. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science249, 1281–1285 (1990). CASPubMed Google Scholar
Brand, S. R., Kobayashi, R. & Mathews, M. B. The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J. Biol. Chem.272, 8388–8395 (1997). CASPubMed Google Scholar
Mibayashi, M. et al. inhibition of retinoic acid-inducible gene I-mediated induction of β interferon by the NS1 protein of influenza A virus. J. Virol.81, 514–524 (2007). CASPubMed Google Scholar
Yang, Y. et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl Acad. Sci. USA104, 7253–7258 (2007). CASPubMedPubMed Central Google Scholar
Loo, Y. M. et al. Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infection. Proc. Natl Acad. Sci. USA103, 6001–6006 (2006). CASPubMedPubMed Central Google Scholar
Lin, R. et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKɛ molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3–4A proteolytic cleavage. J. Virol.80, 6072–6083 (2006). References 68–70 show that HCV protease NS3–4A cleaves IPS1 from the mitochondrial membrane, which defined the mechanism of action of NS3–4A and showed that IPS1 needs to be attached to mitochondria to mediate antiviral responses. CASPubMedPubMed Central Google Scholar
Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity24, 93–103 (2006). CASPubMed Google Scholar
Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med.202, 1333–1339 (2005). CASPubMedPubMed Central Google Scholar
Nociari, M., Ocheretina, O., Schoggins, J. W. & Falck-Pedersen, E. Sensing infection by adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator. J. Virol.81, 4145–4157 (2007). CASPubMedPubMed Central Google Scholar
Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature451, 725–729 (2008). CASPubMed Google Scholar
Otsuka, M. et al. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses. Hepatology41, 1004–1012 (2005). CASPubMed Google Scholar
DiPerna, G. et al. Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by Toll-like receptors. J. Biol. Chem.279, 36570–36578 (2004). CASPubMed Google Scholar
Unterstab, G. et al. Viral targeting of the interferon-β-inducing Traf family member-associated NF-κB activator (TANK)-binding kinase-1. Proc. Natl Acad. Sci. USA102, 13640–13645 (2005). CASPubMedPubMed Central Google Scholar
Brzozka, K., Finke, S. & Conzelmann, K.-K. Identification of the rabies virus α/β interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J. Virol.79, 7673–7681 (2005). CASPubMedPubMed Central Google Scholar
Alff, P. J., Sen, N., Gorbunova, E., Gavrilovskaya, I. N. & Mackow, E. R. The NY-1 hantavirus Gn cytoplasmic tail co-precipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK–TRAF3 complex formation. J. Virol.80, 9676–9686 (2008). Google Scholar
Devaraj, S. G. et al. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem.282, 32208–32221 (2007). CASPubMed Google Scholar
Schroder, M., Baran, M. & Bowie, A. G. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKvarɛ-mediated IRF activation. Embo J.27, 2147–2157 (2008). This study provides an elegant example of how defining mechanisms of viral evasion can identify host proteins with a role in PRR signalling: VACV K7R was shown to inhibit IFN expression by targeting DDX3. PubMedPubMed Central Google Scholar
Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. Embo J.27, 2135–2146. (2008). This study confirms the role of DDX3 in the induction of IFN production. CASPubMedPubMed Central Google Scholar
Lu, L. L., Puri, M., Horvath, C. M. & Sen, G. C. Select paramyxoviral V proteins inhibit IRF3 activation by acting as alternative substrates for inhibitor of κB kinase ɛ (IKKɛ)/TBK1. J. Biol. Chem.283, 14269–14276 (2008). CASPubMedPubMed Central Google Scholar
Lin, R. et al. HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene20, 800–811 (2001). CASPubMed Google Scholar
Joo, C. H. et al. Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi's sarcoma-associated herpesvirus viral IRF homolog vIRF3. J. Virol.81, 8282–8292 (2007). CASPubMedPubMed Central Google Scholar
Lefort, S., Soucy-Faulkner, A., Grandvaux, N. & Flamand, L. Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression. J. Virol.81, 10950–10960 (2007). CASPubMedPubMed Central Google Scholar
Melroe, G. T., Silva, L., Schaffer, P. A. & Knipe, D. M. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: potential role in blocking IFN-β induction. Virology360, 305–321 (2007). CASPubMed Google Scholar
Saira, K., Zhou, Y. & Jones, C. The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits β interferon promoter activity. J. Virol.81, 3077–3086 (2007). CASPubMedPubMed Central Google Scholar
Okumura, A. et al. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology373, 85–97 (2008). CASPubMed Google Scholar
Bauhofer, O. et al. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J. Virol.81, 3087–3096 (2007). CASPubMedPubMed Central Google Scholar
Barro, M. & Patton, J. T. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J. Virol.81, 4473–4481 (2007). CASPubMedPubMed Central Google Scholar
Lu, G. et al. ISG15 enhances the innate antiviral response by inhibition of IRF-3 degradation. Cell. Mol. Biol. (Noisy-le-grand)52, 29–41 (2006). CAS Google Scholar
Guerra, S., Caceres, A., Knobeloch, K. P., Horak, I. & Esteban, M. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog.4, e1000096 (2008). PubMedPubMed Central Google Scholar
Hiscott, J., Nguyen, T. L., Arguello, M., Nakhaei, P. & Paz, S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene25, 6844–6867 (2006). CASPubMedPubMed Central Google Scholar
Tait, S. W., Reid, E. B., Greaves, D. R., Wileman, T. E. & Powell, P. P. Mechanism of inactivation of NF-κB by a viral homologue of IκBα. Signal-induced release of IκBα results in binding of the viral homologue to NF-κB. J. Biol. Chem.275, 34656–34664 (2000). CASPubMed Google Scholar
Rodriguez, C. I. et al. African swine fever virus IAP-like protein induces the activation of nuclear factor κB. J. Virol.76, 3936–3942 (2002). CASPubMedPubMed Central Google Scholar
Chen, R. A. J., Ryzhakov, G., Cooray, S., Randow, F. & Smith, G. L. Inhibition of IκB kinase by vaccinia virus virulence factor B14. PLoS Pathog.4, e22 (2008). PubMedPubMed Central Google Scholar
Matta, H. et al. Kaposi's sarcoma-associated herpesvirus (KSHV) oncoprotein K13 bypasses TRAFs and directly interacts with the IκB kinase complex to selectively activate NF-κB without JNK activation. J. Biol. Chem.282, 24858–24865 (2007). CASPubMed Google Scholar
Wang, T. et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Med.10, 1366–1373 (2004). CASPubMed Google Scholar
Le Goffic, R. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog.2, e53 (2006). PubMed Google Scholar
Hutchens, M. et al. TLR3 increases disease morbidity and mortality from vaccinia infection. J. Immunol.180, 483–491 (2008). References 99–101 show that for three distinct viruses the absence of TLR3 benefits the host, suggesting that some viruses actually use TLR3 to facilitate viral dissemination. Google Scholar
Gowen, B. B. et al. TLR3 deletion limits mortality and disease severity due to Phlebovirus infection. J. Immunol.177, 6301–6307 (2006). CASPubMed Google Scholar
Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science317, 1522–1527 (2007). This is a rare demonstration of the importance of a PRR in human viral disease. CASPubMed Google Scholar
Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nature Med.12, 1301–1309 (2006). CASPubMed Google Scholar
Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med.203, 2461–2472 (2006). CASPubMedPubMed Central Google Scholar
Maloney, G., Schroder, M. & Bowie, A. G. Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10. J. Biol. Chem.280, 30838–30844 (2005). CASPubMed Google Scholar
Jude, B. A. et al. Subversion of the innate immune system by a retrovirus. Nature Immunol.4, 573–578 (2003). This study shows that viruses can subvert TLRs to complete their life cycle. CAS Google Scholar
Ariumi, Y. et al. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J. Virol.81, 13922–13926 (2007). CASPubMedPubMed Central Google Scholar
Yedavalli, V. S. R. K., Neuveut, C., Chi, Y.-H., Kleiman, L. & Jeang, K.-T. Requirement of DDX3 DEAD Box RNA helicase for HIV-1 Rev-RRE export function. Cell119, 381–392 (2004). CASPubMed Google Scholar
Awomoyi, A. A. et al. Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J. Immunol.179, 3171–3177 (2007). CASPubMed Google Scholar
Johnson, C. L., Owen, D. M. & Gale, M. Jr. Functional and therapeutic analysis of hepatitis c virus NS3.4a protease control of antiviral immune defense. J. Biol. Chem.282, 10792–10803 (2007). CASPubMed Google Scholar
Cardenas, W. B. et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits α/β interferon production induced by RIG-I signaling. J. Virol.80, 5168–5178 (2006). CASPubMedPubMed Central Google Scholar
Gale, M. J. Jr et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology230, 217–227 (1997). CASPubMed Google Scholar
Taguchi, T. et al. Hepatitis C virus NS5A protein interacts with 2′, 5′-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J. Gen. Virol.85, 959–969 (2004). CASPubMed Google Scholar
Chang, H. W., Watson, J. C. & Jacobs, B. L. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl Acad. Sci. USA89, 4825–4829 (1992). CASPubMedPubMed Central Google Scholar
Romano, P. R. et al. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol. Cell. Biol.18, 7304–7316 (1998). CASPubMedPubMed Central Google Scholar
Hatada, E. & Fukuda, R. Binding of influenza A virus NS1 protein to dsRNA in vitro. J. Gen. Virol.73, 3325–3329 (1992). CASPubMed Google Scholar