Exploring the full spectrum of macrophage activation (original) (raw)
Nathan, C. Metchnikoff's legacy in 2008. Nature Immunol.9, 695–698 (2008). CAS Google Scholar
Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Rev. Immunol.8, 279–289 (2008). CAS Google Scholar
Erwig, L. P. & Henson, P. M. Immunological consequences of apoptotic cell phagocytosis. Am. J. Pathol.171, 2–8 (2007). CASPubMedPubMed Central Google Scholar
Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nature Med.13, 851–856 (2007). CASPubMed Google Scholar
Park, J. S. et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem.279, 7370–7377 (2004). CASPubMed Google Scholar
Mackaness, G. B. Cellular immunity and the parasite. Adv. Exp. Med. Biol.93, 65–73 (1977). CASPubMed Google Scholar
Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol.3, 23–35 (2003). CAS Google Scholar
Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci.13, 453–461 (2008). In this paper the authors proposed that the M1 and M2 designation for macrophages should be primarily based on the ratio of IL-12 to IL-10 production. CASPubMed Google Scholar
Edwards, J. P., Zhang, X., Frauwirth, K. A. & Mosser, D. M. Biochemical and functional characterization of three activated macrophage populations. J. Leukoc. Biol.80, 1298–1307 (2006). This work shows that alternatively activated macrophages are biochemically and functionally distinct from regulatory macrophages. CASPubMed Google Scholar
Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol.5, 953–964 (2005). CAS Google Scholar
Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med.204, 3037–3047 (2007). CASPubMedPubMed Central Google Scholar
Sunderkotter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol.172, 4410–4417 (2004). PubMed Google Scholar
Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19, 71–82 (2003). This study shows that distinct monocyte populations exist, and have different cell-surface markers and homing capacities. CASPubMed Google Scholar
Strauss-Ayali, D., Conrad, S. M. & Mosser, D. M. Monocyte subpopulations and their differentiation patterns during infection. J. Leukoc. Biol.82, 244–252 (2007). CASPubMed Google Scholar
Passlick, B., Flieger, D. & Ziegler-Heitbrock, H. W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood74, 2527–2534 (1989). CASPubMed Google Scholar
Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity11, 753–761 (1999). CASPubMed Google Scholar
Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science317, 666–670 (2007). CASPubMed Google Scholar
Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci.10, 1538–1543 (2007). CASPubMed Google Scholar
Gordon, S. The macrophage: past, present and future. Eur. J. Immunol.37, S9–S17 (2007). CASPubMed Google Scholar
Dale, D. C., Boxer, L. & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood112, 935–945 (2008). CASPubMed Google Scholar
Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science301, 640–643 (2003). This work shows that mice lacking the TLR adaptor molecule TRIF are defective in TLR3- and TLR4-mediated IFNγ production. ArticleCASPubMed Google Scholar
Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). CASPubMedPubMed Central Google Scholar
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). CASPubMed Google Scholar
Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441, 235–238 (2006). CASPubMed Google Scholar
Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity21, 467–476 (2004). CASPubMed Google Scholar
Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest.101, 890–898 (1998). This work shows that the phagocytosis of apoptotic cells by macrophages is associated with the production of TGFβ, which inhibits the production of pro-inflammatory cytokines. CASPubMedPubMed Central Google Scholar
Filipe-Santos, O. et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin. Immunol.18, 347–361 (2006). CASPubMed Google Scholar
Nandan, D. & Reiner, N. E. Attenuation of γ interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infect. Immun.63, 4495–4500 (1995). CASPubMedPubMed Central Google Scholar
Pai, R. K., Convery, M., Hamilton, T. A., Boom, W. H. & Harding, C. V. Inhibition of IFN-γ-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol.171, 175–184 (2003). CASPubMed Google Scholar
Szekanecz, Z. & Koch, A. E. Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol.19, 289–295 (2007). PubMed Google Scholar
Loke, P. et al. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J. Immunol.179, 3926–3936 (2007). This study shows that the production of IL-4 and IL-13 is a rapid innate immune response to tissue injury. CASPubMed Google Scholar
Brandt, E., Woerly, G., Younes, A. B., Loiseau, S. & Capron, M. IL-4 production by human polymorphonuclear neutrophils. J. Leukoc. Biol.68, 125–130 (2000). CASPubMed Google Scholar
Reese, T. A. et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature447, 92–96 (2007). This work demonstrates that chitin induces the production of IL-4 by eosinophils and basophils. CASPubMedPubMed Central Google Scholar
Kreider, T., Anthony, R. M., Urban, J. F. Jr & Gause, W. C. Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol.19, 448–453 (2007). CASPubMedPubMed Central Google Scholar
Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med.176, 287–292 (1992). This is the initial observation that IL-4 upregulates the expression of macrophage mannose receptor, thereby giving rise to the term alternative activation. CASPubMed Google Scholar
Raes, G., Beschin, A., Ghassabeh, G. H. & De, B. P. Alternatively activated macrophages in protozoan infections. Curr. Opin. Immunol.19, 454–459 (2007). CASPubMed Google Scholar
Wilson, M. S. et al. Immunopathology of schistosomiasis. Immunol. Cell Biol.85, 148–154 (2007). CASPubMed Google Scholar
Cordeiro-da-Silva, A. et al. Immunological alterations induced by polyamine derivatives on murine splenocytes and human mononuclear cells. Int. Immunopharmacol.4, 547–556 (2004). CASPubMed Google Scholar
Anthony, R. M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Med.12, 955–960 (2006). CASPubMed Google Scholar
Zhao, A. et al. Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology135, 217–225 (2008). CASPubMed Google Scholar
Raes, G. et al. Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J. Leukoc. Biol.71, 597–602 (2002). CASPubMed Google Scholar
Kzhyshkowska, J. et al. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood107, 3221–3228 (2006). CASPubMed Google Scholar
Zhu, Z. et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science304, 1678–1682 (2004). CASPubMed Google Scholar
Bleau, G., Massicotte, F., Merlen, Y. & Boisvert, C. Mammalian chitinase-like proteins. EXS87, 211–221 (1999). CASPubMed Google Scholar
Fusetti, F. et al. Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. J. Biol. Chem.277, 25537–25544 (2002). CASPubMed Google Scholar
Hesse, M. et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol.167, 6533–6544 (2001). This study shows that arginase-1 production by alternatively activated macrophages depends on TH2-type cytokines and inversely correlates with nitric oxide production. CASPubMed Google Scholar
Munitz, A., Brandt, E. B., Mingler, M., Finkelman, F. D. & Rothenberg, M. E. Distinct roles for IL-13 and IL-4 via IL-13 receptor α1 and the type II IL-4 receptor in asthma pathogenesis. Proc. Natl Acad. Sci. USA105, 7240–7245 (2008). CASPubMedPubMed Central Google Scholar
Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity27, 505–517 (2007). CASPubMed Google Scholar
Kropf, P. et al. Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J.19, 1000–1002 (2005). CASPubMed Google Scholar
Muller, U. et al. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol.179, 5367–5377 (2007). PubMed Google Scholar
Shirey, K. A., Cole, L. E., Keegan, A. D. & Vogel, S. N. Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism. J. Immunol.181, 4159–4167 (2008). CASPubMed Google Scholar
Tumitan, A. R., Monnazzi, L. G., Ghiraldi, F. R., Cilli, E. M. & hado de Medeiros, B. M. Pattern of macrophage activation in _Yersinia_-resistant and _Yersinia_-susceptible strains of mice. Microbiol. Immunol.51, 1021–1028 (2007). CASPubMed Google Scholar
Sternberg, E. M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Rev. Immunol.6, 318–328 (2006). CAS Google Scholar
Elenkov, I. J. Glucocorticoids and the Th1/Th2 balance. Ann. N. Y. Acad. Sci.1024, 138–146 (2004). CASPubMed Google Scholar
Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol.162, 3639–3646 (1999). CASPubMed Google Scholar
Franchimont, D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. NY Acad. Sci.1024, 124–137 (2004). CASPubMed Google Scholar
Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol.73, 209–212 (2003). CASPubMed Google Scholar
Lucas, M., Zhang, X., Prasanna, V. & Mosser, D. M. ERK activation following macrophage FcγR ligation leads to chromatin modifications at the IL-10 locus. J. Immunol.175, 469–477 (2005). This paper shows that activation of ERK is required for the hypersecretion of IL-10 by regulatory macrophages. CASPubMed Google Scholar
Gerber, J. S. & Mosser, D. M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fcγ receptors. J. Immunol.166, 6861–6868 (2001). CASPubMed Google Scholar
Strassmann, G., Patil-Koota, V., Finkelman, F., Fong, M. & Kambayashi, T. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J. Exp. Med.180, 2365–2370 (1994). CASPubMed Google Scholar
Hasko, G., Pacher, P., Deitch, E. A. & Vizi, E. S. Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol. Ther.113, 264–275 (2007). CASPubMed Google Scholar
Hasko, G., Szabo, C., Nemeth, Z. H. & Deitch, E. A. Dopamine suppresses IL-12 p40 production by lipopolysaccharide-stimulated macrophages via a β-adrenoceptor-mediated mechanism. J. Neuroimmunol.122, 34–39 (2002). CASPubMed Google Scholar
Sirois, J., Menard, G., Moses, A. S. & Bissonnette, E. Y. Importance of histamine in the cytokine network in the lung through H2 and H3 receptors: stimulation of IL-10 production. J. Immunol.164, 2964–2970 (2000). CASPubMed Google Scholar
Weigert, A. et al. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol. Biol. Cell18, 3810–3819 (2007). CASPubMedPubMed Central Google Scholar
Lam, C. W., Perretti, M. & Getting, S. J. Melanocortin receptor signaling in RAW264.7 macrophage cell line. Peptides27, 404–412 (2006). CASPubMed Google Scholar
Delgado, M., Munoz-Elias, E. J., Gomariz, R. P. & Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J. Immunol.162, 1707–1716 (1999). CASPubMed Google Scholar
Huang, H., Park, P. H., McMullen, M. R. & Nagy, L. E. Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. J. Gastroenterol. Hepatol.1, S50–S53 (2008). Google Scholar
Ando, M., Tu, W., Nishijima, K. & Iijima, S. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem. Biophys. Res. Commun.369, 878–883 (2008). CASPubMed Google Scholar
Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood107, 2112–2122 (2006). In this study, tumour-associated macrophages are profiled by microarray analysis. CASPubMed Google Scholar
Miles, S. A., Conrad, S. M., Alves, R. G., Jeronimo, S. M. & Mosser, D. M. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J. Exp. Med.201, 747–754 (2005). CASPubMedPubMed Central Google Scholar
Baetselier, P. D. et al. Alternative versus classical macrophage activation during experimental African trypanosomosis. Int. J. Parasitol.31, 575–587 (2001). CASPubMed Google Scholar
Kim, C. et al. Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Proc. Natl Acad. Sci. USA105, 6150–6155 (2008). CASPubMedPubMed Central Google Scholar
Agrawal, A. & Pulendran, B. Anthrax lethal toxin: a weapon of multisystem destruction. Cell Mol. Life Sci.61, 2859–2865 (2004). CASPubMed Google Scholar
Benoit, M., Barbarat, B., Bernard, A., Olive, D. & Mege, J. L. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur. J. Immunol.38, 1065–1070 (2008). CASPubMed Google Scholar
Mahalingam, S. & Lidbury, B. A. Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-κB) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc. Natl Acad. Sci. USA99, 13819–13824 (2002). CASPubMedPubMed Central Google Scholar
Stout, R. D. et al. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol.175, 342–349 (2005). CASPubMed Google Scholar
Klimp, A. H., de Vries, E. G., Scherphof, G. L. & Daemen, T. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol.44, 143–161 (2002). CASPubMed Google Scholar
Teng, M. W., Swann, J. B., Koebel, C. M., Schreiber, R. D. & Smyth, M. J. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol.84, 988–993 (2008). CASPubMed Google Scholar
Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res.67, 5064–5066 (2007). This work correlates macrophage recruitment into tumours with an angiogenic switch and a poor prognosis. CASPubMed Google Scholar
Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA105, 652–656 (2008). CASPubMedPubMed Central Google Scholar
Romieu-Mourez, R. et al. Distinct roles for IFN regulatory factor (IRF)-3 and IRF-7 in the activation of antitumor properties of human macrophages. Cancer Res.66, 10576–10585 (2006). CASPubMed Google Scholar
Pollard, J. W. Macrophages define the invasive microenvironment in breast cancer. J. Leukoc. Biol.84, 623–630 (2008). CASPubMedPubMed Central Google Scholar
Liu, C. H. et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J. Biol. Chem.276, 18563–18569 (2001). CASPubMed Google Scholar
Knowles, H. J. & Harris, A. L. Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res.3, 318–322 (2001). CASPubMedPubMed Central Google Scholar
Kuang, D. M. et al. Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood110, 587–595 (2007). CASPubMed Google Scholar
de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell7, 411–423 (2005). CASPubMed Google Scholar
Hagemann, T. et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med.205, 1261–1268 (2008). CASPubMedPubMed Central Google Scholar
Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res.66, 11238–11246 (2006). CASPubMed Google Scholar
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117, 175–184 (2007). CASPubMedPubMed Central Google Scholar
Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol.28, 551–558 (2007). CASPubMed Google Scholar
Heilbronn, L. K. & Campbell, L. V. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des.14, 1225–1230 (2008). CASPubMed Google Scholar
Zeyda, M. & Stulnig, T. M. Adipose tissue macrophages. Immunol. Lett.112, 61–67 (2007). CASPubMed Google Scholar
Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res.46, 2347–2355 (2005). CASPubMed Google Scholar
Bastard, J. P. et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw.17, 4–12 (2006). CASPubMed Google Scholar
Hansson, G. K., Robertson, A. K. & Soderberg-Naucler, C. Inflammation and atherosclerosis. Annu. Rev. Pathol.1, 297–329 (2006). CASPubMed Google Scholar
Fernandez, A. Z. Peroxisome proliferator-activated receptors in the modulation of the immune/inflammatory response in atherosclerosis. PPAR Res.2008, 285842 (2008). PubMedPubMed Central Google Scholar
Martin-Fuentes, P. et al. Individual variation of scavenger receptor expression in human macrophages with oxidized low-density lipoprotein is associated with a differential inflammatory response. J. Immunol.179, 3242–3248 (2007). CASPubMed Google Scholar
Haque, S., Mirjafari, H. & Bruce, I. N. Atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Curr. Opin. Lipidol.19, 338–343 (2008). CASPubMed Google Scholar
Roark, C. L., Simonian, P. L., Fontenot, A. P., Born, W. K. & O'Brien, R. L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol.20, 353–357 (2008). CASPubMedPubMed Central Google Scholar
Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006). CASPubMed Google Scholar
costa-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol.8, 942–949 (2007). Google Scholar
Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nature Immunol.8, 1086–1094 (2007). CAS Google Scholar
Jovanovic, D. V. et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J. Immunol.160, 3513–3521 (1998). CASPubMed Google Scholar
Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med.203, 2673–2682 (2006). CASPubMedPubMed Central Google Scholar
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol.3, 133–146 (2003). CAS Google Scholar
MacMicking, J., Xie, Q. W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol.15, 323–350 (1997). CASPubMed Google Scholar
Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol.177, 7303–7311 (2006). CASPubMed Google Scholar
Kodelja, V. et al. Alternative macrophage activation-associated CC-chemokine-1, a novel structural homologue of macrophage inflammatory protein-1 α with a Th2-associated expression pattern. J. Immunol.160, 1411–1418 (1998). CASPubMed Google Scholar
Raes, G. et al. FIZZ1 and Ym as tools to discriminate between differentially activated macrophages. Dev. Immunol.9, 151–159 (2002). CASPubMedPubMed Central Google Scholar
Wirnsberger, G., Hebenstreit, D., Posselt, G., Horejs-Hoeck, J. & Duschl, A. IL-4 induces expression of TARC/CCL17 via two STAT6 binding sites. Eur. J. Immunol.36, 1882–1891 (2006). CASPubMedPubMed Central Google Scholar
Ruckerl, D., Hessmann, M., Yoshimoto, T., Ehlers, S. & Holscher, C. Alternatively activated macrophages express the IL-27 receptor α chain WSX-1. Immunobiology211, 427–436 (2006). PubMed Google Scholar
Wynes, M. W. & Riches, D. W. Induction of macrophage insulin-like growth factor-I expression by the Th2 cytokines IL-4 and IL-13. J. Immunol.171, 3550–3559 (2003). CASPubMed Google Scholar
Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol.23, 549–555 (2002). CASPubMed Google Scholar
Goerdt, S. & Orfanos, C. E. Other functions, other genes: alternative activation of antigen presenting cells. Immunity10, 137–142 (1999). CASPubMed Google Scholar
Torocsik, D., Bardos, H., Nagy, L. & Adany, R. Identification of factor XIII-A as a marker of alternative macrophage activation. Cell. Mol. Life Sci.62, 2132–2139 (2005). CASPubMed Google Scholar
Sironi, M. et al. Differential regulation of chemokine production by Fcγ receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J. Leukoc. Biol.80, 342–349 (2006). CASPubMed Google Scholar
Stumhofer, J. S. & Hunter, C. A. Advances in understanding the anti-inflammatory properties of IL-27. Immunol. Lett.117, 123–130 (2008). CASPubMedPubMed Central Google Scholar