Nongenomic actions of steroid hormones (original) (raw)

References

  1. Selye, H. Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology 30, 437–453 (1942). The first detailed report of rapid steroid action in addition to a delayed action — a fine example of careful scientific work that was unbiased by preconceived ideas.
    CAS Google Scholar
  2. Klein, K. & Henk, W. Klinisch-experimentelle Untersuchungen über den Einfluβ von Aldosteron auf Hämodynamik und Gerinnung. Z. Kreisl. Forsch. 52, 40–53 (1963).
    CAS Google Scholar
  3. Spach, C. & Streeten, D. H. Retardation of sodium exchange in dog erythrocytes by physiological concentrations of aldosterone, in vitro. J. Clin. Invest. 43, 217–227 (1964).
    CAS PubMed PubMed Central Google Scholar
  4. Beato, M. Gene regulation by steroid hormones. Cell 56, 335–344 (1989). An excellent account of the direct genomic action of classical steroid receptors.
    CAS PubMed Google Scholar
  5. Losel, R. M. et al. Nongenomic steroid action: controversies, questions and answers? Physiol. Rev. (in the press).
  6. Meyer, C., Schmid, R., Scriba, P. C. & Wehling, M. Purification and partial sequencing of high affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem. 239, 726–731 (1996).
    CAS PubMed Google Scholar
  7. Falkenstein, E., Norman, A. W. & Wehling, M. Mannheim classification of nongenomically initiated (rapid) steroid action(s). J. Clin. Endocrinol. Metab. 85, 2072–2075 (2000). The classification scheme outlined in this work should enable nongenomic responses to be categorized.
    CAS PubMed Google Scholar
  8. Masui, Y. & Markert, C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool. 177, 129–145 (1971).
    CAS PubMed Google Scholar
  9. Finidori-Lepicard, J., Schorderet-Slatkine, S., Hanoune, J. & Baulieu, E. E. Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature 292, 255–257 (1981).
    CAS PubMed Google Scholar
  10. Sadler, S. E. & Maller, J. L. Progesterone inhibits adenylate cyclase in Xenopus oocytes. Action on the guanine nucleotide regulatory protein. J. Biol. Chem. 256, 6368–6373 (1981).
    CAS PubMed Google Scholar
  11. Maller, J. L. & Krebs, E. G. Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 252, 1712–1718 (1977).
    CAS PubMed Google Scholar
  12. Bagowski, C. P., Myers, J. W. & Ferrell, J. E. Jr. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J. Biol. Chem. 276, 37708–37714 (2001).
    CAS PubMed Google Scholar
  13. Osman, R. A., Andria, M. L., Jones, A. D. & Meizel, S. Steroid induced exocytosis: the human sperm acrosome reaction. Biochem. Biophys. Res. Commun. 160, 828–833 (1989). This study reports on the identification of progesterone as an acrosome-reaction-inducing compound present in human follicular fluid.
    CAS PubMed Google Scholar
  14. Meizel, S. & Turner, K. O. Progesterone acts at the plasma membrane of human sperm. Mol. Cell. Endocrinol. 77, R1–R5 (1991).
    CAS PubMed Google Scholar
  15. Castilla, J. A. et al. Undetectable expression of genomic progesterone receptor in human spermatozoa. Hum. Reprod. 10, 1757–1760 (1995).
    CAS PubMed Google Scholar
  16. Luconi, M. et al. Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J. Clin. Endocrinol. Metab. 83, 877–885 (1998).
    CAS PubMed Google Scholar
  17. Sabeur, K., Edwards, D. P. & Meizel, S. Human sperm plasma membrane progesterone receptor(s) and the acrosome reaction. Biol. Reprod. 54, 993–1001 (1996).
    CAS PubMed Google Scholar
  18. Sachdeva, G., Shah, C. A., Kholkute, S. D. & Puri, C. P. Detection of progesterone receptor transcript in human spermatozoa. Biol. Reprod. 62, 1610–1614 (2000).
    CAS PubMed Google Scholar
  19. Blackmore, P. F., Fisher, J. F., Spilman, C. H. & Bleasdale, J. E. Unusual steroid specificity of the cell surface progesterone receptor on human sperm. Mol. Pharmacol. 49, 727–739 (1996). The differences in steroid selectivity between the classical and the nonclassical sperm progesterone receptors have been studied with a large set of steroids.
    CAS PubMed Google Scholar
  20. Blackmore, P. F., Neulen, J., Lattanzio, F. & Beebe, S. J. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J. Biol. Chem. 266, 18655–18659 (1991).
    CAS PubMed Google Scholar
  21. Baldi, E. et al. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J. Androl. 12, 323–330 (1991).
    CAS PubMed Google Scholar
  22. Serres, C., Yang, J. & Jouannet, P. RU486 and calcium fluxes in human spermatozoa. Biochem. Biophys. Res. Commun. 204, 1009–1015 (1994).
    CAS PubMed Google Scholar
  23. Blackmore, P. F. & Lattanzio, F. A. Cell surface localization of a novel non-genomic progesterone receptor on the head of human sperm. Biochem. Biophys. Res. Commun. 181, 331–336 (1991).
    CAS PubMed Google Scholar
  24. Falkenstein, E. et al. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology 140, 5999–6002 (1999).
    CAS PubMed Google Scholar
  25. Falkenstein, E., Meyer, C., Eisen, C., Scriba, P. C. & Wehling, M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 229, 86–89 (1996).
    CAS PubMed Google Scholar
  26. Krebs, C. J., Jarvis, E. D., Chan, J., Lydon, J. P., Ogawa, S. & Pfaff, D. W. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc. Natl Acad. Sci. USA 97, 12816–12821 (2000).
    CAS PubMed PubMed Central Google Scholar
  27. Boonyaratanakornkit, V. et al. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol. Cell 8, 269–280 (2001).
    CAS PubMed Google Scholar
  28. Pietras, R. J. & Szego, C. M. Endometrial cell calcium and oestrogen action. Nature 253, 357–359 (1975).
    CAS PubMed Google Scholar
  29. Perret, S., Dockery, P. & Harvey, B. J. 17β-oestradiol stimulates capacitative Ca2+ entry in human endometrial cells. Mol. Cell. Endocrinol. 176, 77–84 (2001).
    CAS PubMed Google Scholar
  30. Morley, P., Whitfield, J. F., Vanderhyden, B. C., Tsang, B. K. & Schwartz, J. L. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 131, 1305–1312 (1992).
    CAS PubMed Google Scholar
  31. Tesarik, J. & Mendoza, C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J. Clin. Endocrinol. Metab. 80, 1438–1443 (1995).
    CAS PubMed Google Scholar
  32. Pietras, R. J. & Szego, C. M. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265, 69–72 (1977).
    CAS PubMed Google Scholar
  33. Reis, S. E. et al. Ethinyl estradiol acutely attenuates abnormal coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation 89, 52–60 (1994).
    CAS PubMed Google Scholar
  34. Salas, E. et al. Endothelium-independent relaxation by 17-α-estradiol of pig coronary arteries. Eur. J. Pharmacol. 258, 47–55 (1994).
    CAS PubMed Google Scholar
  35. Shaul, P. W. Rapid activation of endothelial nitric oxide synthase by estrogen. Steroids 64, 28–34 (1999). An overview of the essential properties of NOS activation by oestradiol.
    CAS PubMed Google Scholar
  36. Caulin-Glaser, T., Garcia-Cardena, G., Sarrel, P., Sessa, W. C. & Bender, J. R. 17β-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ. Res. 81, 885–892 (1997).
    CAS PubMed Google Scholar
  37. Chen, Z. et al. Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Invest. 103, 401–406 (1999).
    CAS PubMed PubMed Central Google Scholar
  38. Haynes, M. P. et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase–Akt pathway in human endothelial cells. Circ. Res. 87, 677–682 (2000).
    CAS PubMed Google Scholar
  39. Wyckoff, M. H. et al. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Gα(i). J. Biol. Chem. 276, 27071–27076 (2001).
    CAS PubMed Google Scholar
  40. Russell, K. S., Haynes, M. P., Sinha, D., Clerisme, E. & Bender, J. R. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc. Natl Acad. Sci. USA 97, 5930–5935 (2000).
    CAS PubMed PubMed Central Google Scholar
  41. Razandi, M., Oh, P., Pedram, A., Schnitzer, J. & Levin, E. R. ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16, 100–115 (2002).
    CAS PubMed Google Scholar
  42. Chambliss, K. L. et al. Estrogen receptor α and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 87, E44–E52 (2000).
    CAS PubMed Google Scholar
  43. Toran-Allerand, C. D., Singh, M. & Setalo, G. Jr. Novel mechanisms of estrogen action in the brain: new players in an old story. Front. Neuroendocrinol. 20, 97–121 (1999).
    CAS PubMed Google Scholar
  44. Chambliss, K. L., Yuhanna, I. S., Anderson, R. G., Mendelsohn, M. E. & Shaul, P. W. ERβ has nongenomic action in caveolae. Mol. Endocrinol. 16, 938–946 (2002).
    CAS PubMed Google Scholar
  45. Shughrue, P. J., Askew, G. R., Dellovade, T. L. & Merchenthaler, I. Estrogen-binding sites and their functional capacity in estrogen receptor double knockout mouse brain. Endocrinology 143, 1643–1650 (2002).
    CAS PubMed Google Scholar
  46. Pedram, A., Razandi, M., Aitkenhead, M., Hughes, C. C. & Levin, E. R. Integration of the non-genomic and genomic actions of estrogen: membrane initiated signaling by steroid (MISS) to transcription and cell biology. J. Biol. Chem. (in the press).
  47. Wehling, M., Armanini, D., Strasser, T. & Weber, P. C. Effect of aldosterone on sodium and potassium concentrations in human mononuclear leukocytes. Am. J. Physiol. 252, E505–E508 (1987).
    CAS PubMed Google Scholar
  48. Wehling, M., Käsmayr, J. & Theisen, K. Rapid effects of mineralocorticoids on sodium-proton exchanger: genomic or nongenomic pathway? Am. J. Physiol. 260, E719–E726 (1991).
    CAS PubMed Google Scholar
  49. Wehling, M., Kuhls, S. & Armanini, D. Volume regulation of human lymphocytes by aldosterone in isotonic media. Am. J. Physiol. 257, E170–E174 (1989).
    CAS PubMed Google Scholar
  50. Wehling, M., Ulsenheimer, A., Schneider, M., Neylon, C. & Christ, M. Rapid effects of aldosterone on free intracellular calcium in vascular smooth muscle and endothelial cells: subcellular localization of calcium elevations by single cell imaging. Biochem. Biophys. Res. Commun. 204, 475–481 (1994).
    CAS PubMed Google Scholar
  51. Wehling, M. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol. 59, 365–393 (1997).
    CAS PubMed Google Scholar
  52. Haseroth, K. et al. Rapid nongenomic effects of aldosterone in mineralocorticoid-receptor- knockout mice. Biochem. Biophys. Res. Commun. 266, 257–261 (1999).
    CAS PubMed Google Scholar
  53. Alzamora, R., Michea, L. & Marusic, E. T. Role of 11β-hydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension 35, 1099–1104 (2000).
    CAS PubMed Google Scholar
  54. Peterfalvi, M., Torelli, V., Fournex, R., Rousseau, G., Claire, M., Michaud, A. & Corvol, P. Importance of the lactonic ring in the activity of steroidal antialdosterones. Biochem. Pharmacol. 29, 353–357 (1980).
    CAS PubMed Google Scholar
  55. Estrada, M., Liberona, J. L., Miranda, M. & Jaimovich, E. Aldosterone- and testosterone-mediated intracellular calcium response in skeletal muscle cell cultures. Am. J. Physiol. Endocrinol. Metab. 279, E132–E139 (2000).
    CAS PubMed Google Scholar
  56. Harvey, B. J. & Higgins, M. Nongenomic effects of aldosterone on Ca2+ in M-1 cortical collecting duct cells. Kidney Int. 57, 1395–1403 (2000).
    CAS PubMed Google Scholar
  57. Oberleithner, H. Aldosterone and nuclear signaling in kidney. Steroids 64, 42–50 (1999).
    CAS PubMed Google Scholar
  58. Barbato, J. C., Mulrow, P. J., Shapiro, J. I. & Franco-Saenz, R. Rapid effects of aldosterone and spironolactone in the isolated working rat heart. Hypertension 40, 130–135 (2002). In this paper, aldosterone and spironolactone are shown to rapidly modulate cardiac function, which might have significance for cardiac diseases.
    CAS PubMed Google Scholar
  59. Orchinik, M., Murray, T. F. & Moore, F. L. A corticosteroid receptor in neuronal membranes. Science 252, 1848–1851 (1991).
    CAS PubMed Google Scholar
  60. Moore, F. L. Amphibian model system for problems in behavioral neuroendocrinology. J. Exp. Zool. Suppl. 4, 157–158 (1990).
    CAS PubMed Google Scholar
  61. Evans, S. J., Searcy, B. T. & Moore, F. L. A subset of κ opioid ligands bind to the membrane glucocorticoid receptor in an amphibian brain. Endocrinology 141, 2294–2300 (2000).
    CAS PubMed Google Scholar
  62. Evans, S. J., Murray, T. F. & Moore, F. L. Partial purification and biochemical characterization of a membrane glucocorticoid receptor from an amphibian brain. J. Steroid Biochem. Mol. Biol. 72, 209–221 (2000).
    CAS PubMed Google Scholar
  63. Hinz, B. & Hirschelmann, R. Rapid non-genomic feedback effects of glucocorticoids on CRF-induced ACTH secretion in rats. Pharm. Res. 17, 1273–1277 (2000).
    CAS PubMed Google Scholar
  64. Buttgereit, F., Burmester, G. R. & Brand, M. D. Bioenergetics of immune functions: fundamental and therapeutic aspects. Immunol. Today 21, 192–199 (2000).
    CAS PubMed Google Scholar
  65. Gametchu, B. Glucocorticoid receptor-like antigen in lymphoma cell membranes: correlation to cell lysis. Science 236, 456–461 (1987).
    CAS PubMed Google Scholar
  66. Gametchu, B., Watson, C. S. & Wu, S. Use of receptor antibodies to demonstrate membrane glucocorticoid receptor in cells from human leukemic patients. FASEB J. 7, 1283–1292 (1993).
    CAS PubMed Google Scholar
  67. Watson, C. S. & Gametchu, B. Membrane estrogen and glucocorticoid receptors — implications for hormonal control of immune function and autoimmunity. Int. Immunopharmacol. 1, 1049–1063 (2001).
    CAS PubMed Google Scholar
  68. Buttgereit, F., Brand, M. D. & Burmester, G. R. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem. Pharmacol. 58, 363–368 (1999).
    CAS PubMed Google Scholar
  69. Hafezi-Moghadam, A. et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nature Med. 8, 473–479 (2002).
    CAS PubMed Google Scholar
  70. Nemere, I., Yoshimoto, Y. & Norman, A. W. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3 . Endocrinology 115, 1476–1483 (1984).
    CAS PubMed Google Scholar
  71. Norman, A. W. et al. Demonstration that 1β,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1α,25-dihydroxyvitamin D3 . J. Biol. Chem. 268, 20022–20030 (1993). This is the first description of a selective antagonist for nongenomic vitamin D responses.
    CAS PubMed Google Scholar
  72. Norman, A. W., Song, X., Zanello, L., Bula, C. & Okamura, W. H. Rapid and genomic biological responses are mediated by different shapes of the agonist steroid hormone, 1α,25(OH)2vitamin D3 . Steroids 64, 120–128 (1999).
    CAS PubMed Google Scholar
  73. Farach-Carson, M. C. & Ridall, A. L. Dual 1,25-dihydroxyvitamin D3 signal response pathways in osteoblasts: cross-talk between genomic and membrane-initiated pathways. Am. J. Kidney Dis. 31, 729–742 (1998).
    CAS PubMed Google Scholar
  74. Norman, A. W. et al. Different shapes of the steroid hormone 1α,25(OH)2-vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses. Steroids 66, 147–158 (2001).
    CAS PubMed Google Scholar
  75. Boyan, B. D. et al. Hybrid structural analogues of 1,25-(OH)2D3 regulate chondrocyte proliferation and proteoglycan production as well as protein kinase C through a nongenomic pathway. J. Cell Biochem. 66, 457–470 (1997).
    CAS PubMed Google Scholar
  76. Greising, D. M., Schwartz, Z., Posner, G. H., Sylvia, V. L., Dean, D. D. & Boyan, B. D. A-ring analogues of 1, 25-(OH)2D3 with low affinity for the vitamin D receptor modulate chondrocytes via membrane effects that are dependent on cell maturation. J. Cell Physiol. 171, 357–367 (1997).
    CAS PubMed Google Scholar
  77. Lieberherr, M. Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteoblasts. J. Biol. Chem. 262, 13168–13173 (1987).
    CAS PubMed Google Scholar
  78. Caffrey, J. M. & Farach-Carson, M. C. Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J. Biol. Chem. 264, 20265–20274 (1989).
    CAS PubMed Google Scholar
  79. Civitelli, R. et al. Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells. Endocrinology 127, 2253–2262 (1990).
    CAS PubMed Google Scholar
  80. Baran, D. T. et al. 1α,25-dihydroxyvitamin D3 rapidly increases cytosolic calcium in clonal rat osteosarcoma cells lacking the vitamin D receptor. J. Bone Miner. Res. 6, 1269–1275 (1991).
    CAS PubMed Google Scholar
  81. Le Mellay, V., Grosse, B. & Lieberherr, M. Phospholipase Cβ and membrane action of calcitriol and estradiol. J. Biol. Chem. 272, 11902–11907 (1997).
    CAS PubMed Google Scholar
  82. Sylvia, V. L. et al. Nongenomic regulation of protein kinase C isoforms by the vitamin D metabolites 1α,25-(OH)2D3 and 24R,25-(OH)2D3 . J. Cell. Physiol. 167, 380–393 (1996).
    CAS PubMed Google Scholar
  83. Wali, R. K., Baum, C. L., Sitrin, M. D. & Brasitus, T. A. 1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J. Clin. Invest. 85, 1296–1303 (1990).
    CAS PubMed PubMed Central Google Scholar
  84. Marcinkowska, E., Wiedlocha, A. & Radzikowski, C. 1,25-Dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem. Biophys. Res. Commun. 241, 419–426 (1997).
    CAS PubMed Google Scholar
  85. de Boland, A. R. & Norman, A. Evidence for involvement of protein kinase C and cyclic adenosine 3′,5′ monophosphate-dependent protein kinase in the 1,25-dihydroxy-vitamin D3-mediated rapid stimulation of intestinal calcium transport, (transcaltachia). Endocrinology 127, 39–45 (1990).
    CAS PubMed Google Scholar
  86. Vazquez, G., Boland, R. & de Boland, A. R. Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Biochim. Biophys. Acta 1269, 91–97 (1995).
    PubMed Google Scholar
  87. Fernandez, L. M., Massheimer, V. & de Boland, A. R. Cyclic AMP-dependent membrane protein phosphorylation and calmodulin binding are involved in the rapid stimulation of muscle calcium uptake by 1,25-dihydroxyvitamin D3 . Calcif. Tissue Int. 47, 314–319 (1990).
    CAS PubMed Google Scholar
  88. Selles, J. & Boland, R. Evidence on the participation of the 3′,5′-cyclic AMP pathway in the non-genomic action of 1,25-dihydroxy-vitamin D3 in cardiac muscle. Mol. Cell. Endocrinol. 82, 229–235 (1991).
    CAS PubMed Google Scholar
  89. Massheimer, V., Boland, R. & de Boland, A. R. Rapid 1,25(OH)2-vitamin D3 stimulation of calcium uptake by rat intestinal cells involves a dihydropyridine-sensitive cAMP-dependent pathway. Cell Signal. 6, 299–304 (1994).
    CAS PubMed Google Scholar
  90. Segal, J., Schwartz, H. & Gordon, A. The effect of triiodothyronine on 2-deoxy-D-(1-3H)glucose uptake in cultured chick embryo heart cells. Endocrinology 101, 143–149 (1977).
    CAS PubMed Google Scholar
  91. Segal, J. A rapid, extranuclear effect of 3,5,3′-triiodothyronine on sugar uptake by several tissues in the rat in vivo. Evidence for a physiological role for the thyroid hormone action at the level of the plasma membrane. Endocrinology 124, 2755–2764 (1989).
    CAS PubMed Google Scholar
  92. Segal, J. In vivo effect of 3,5,3′-triiodothyronine on calcium uptake in several tissues in the rat: evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane. Endocrinology 127, 17–24 (1990).
    CAS PubMed Google Scholar
  93. Davis, F. B., Cody, V., Davis, P. J., Borzynski, L. J. & Blas, S. D. Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J. Biol. Chem. 258, 12373–12377 (1983).
    CAS PubMed Google Scholar
  94. Rubinacci, A., Divieti, P., Lodigiani, S., De Ponti, A. & Samaja, M. Thyroid hormones and active calcium transport of inside-out red cell membrane vesicles. Biochem. Med. Metab. Biol. 48, 235–240 (1992).
    CAS PubMed Google Scholar
  95. Davis, P. J., Davis, F. B. & Lawrence, W. D. Thyroid hormone regulation of membrane Ca2+-ATPase activity. Endocr. Res. 15, 651–682 (1989).
    CAS PubMed Google Scholar
  96. Lawrence, W. D., Schoenl, M. & Davis, P. J. Stimulation in vitro of rabbit erythrocyte cytosol phospholipid-dependent protein kinase activity. A novel action of thyroid hormone. J. Biol. Chem. 264, 4766–4768 (1989).
    CAS PubMed Google Scholar
  97. Lin, H. Y., Thacorf, H. R., Davis, F. B. & Davis, P. J. Potentiation by thyroxine of interferon-γ-induced antiviral state requires PKA and PKC activities. Am. J. Physiol. 271, C1256–C1261 (1996).
    CAS PubMed Google Scholar
  98. Kavok, N. S., Krasilnikova, O. A. & Babenko, N. A. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone. BMC Cell. Biol. 2, 5 (2001).
    CAS PubMed PubMed Central Google Scholar
  99. Lin, H. Y., Davis, F. B., Gordinier, J. K., Martino, L. J. & Davis, P. J. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am. J. Physiol. 276, C1014–C1024 (1999).
    CAS PubMed Google Scholar
  100. Lin, H. Y., Shih, A., Davis, F. B. & Davis, P. J. Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochem. J. 338, 427–432 (1999).
    CAS PubMed PubMed Central Google Scholar
  101. Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J. & Davis, F. B. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem. 275, 38032–38039 (2000).
    CAS PubMed Google Scholar
  102. Ashizawa, K., McPhie, P., Lin, K. H. & Cheng, S. Y. An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1,6-bisphosphate. Biochemistry 30, 7105–7111 (1991).
    CAS PubMed Google Scholar
  103. Arnold, S., Goglia, F. & Kadenbach, B. 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem. 252, 325–330 (1998).
    CAS PubMed Google Scholar
  104. Baulieu, E. E. Neurosteroids: a new function in the brain. Biol. Cell 71, 3–10 (1991). An early account of the origin and action of neurosteroids.
    CAS PubMed Google Scholar
  105. Friess, E., Tagaya, H., Trachsel, L., Holsboer, F. & Rupprecht, R. Progesterone-induced changes in sleep in male subjects. Am. J. Physiol. 272, E885–E891 (1997).
    CAS PubMed Google Scholar
  106. Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L. & Paul, S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232, 1004–1007 (1986).
    CAS PubMed Google Scholar
  107. Rupprecht, R. The neuropsychopharmacological potential of neuroactive steroids. J. Psychiatr. Res. 31, 297–314 (1997).
    CAS PubMed Google Scholar
  108. Frye, C. A. The role of neurosteroids and nongenomic effects of progestins in the ventral tegmental area in mediating sexual receptivity of rodents. Horm. Behav. 40, 226–233 (2001).
    CAS PubMed Google Scholar
  109. Mathis, C., Paul, S. M. & Crawley, J. N. The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology (Berl.) 116, 201–206 (1994).
    CAS Google Scholar
  110. Reddy, D. S., Kaur, G. & Kulkarni, S. K. σ(σ1) receptor mediated anti-depressant-like effects of neurosteroids in the Porsolt forced swim test. Neuroreport 9, 3069–3073 (1998).
    CAS PubMed Google Scholar
  111. Weaver, C. E. Jr, Park-Chung, M., Gibbs, T. T. & Farb, D. H. 17β-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res. 761, 338–341 (1997).
    CAS PubMed Google Scholar
  112. Crawley, J. N., Glowa, J. R., Majewska, M. D. & Paul, S. M. Anxiolytic activity of an endogenous adrenal steroid. Brain Res. 398, 382–385 (1986).
    CAS PubMed Google Scholar
  113. Britton, K. T., Page, M., Baldwin, H. & Koob, G. F. Anxiolytic activity of steroid anesthetic alphaxalone. J. Pharmacol. Exp. Ther. 258, 124–129 (1991).
    CAS PubMed Google Scholar
  114. Wu, F. S., Gibbs, T. T. & Farb, D. H. Inverse modulation of γ-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmacol. 37, 597–602 (1990).
    CAS PubMed Google Scholar
  115. Wu, F. S., Chen, S. C. & Tsai, J. J. Competitive inhibition of the glycine-induced current by pregnenolone sulfate in cultured chick spinal cord neurons. Brain Res. 750, 318–320 (1997).
    CAS PubMed Google Scholar
  116. Wu, F. S., Lai, C. P. & Liu, B. C. Non-competitive inhibition of 5-HT3 receptor-mediated currents by progesterone in rat nodose ganglion neurons. Neurosci. Lett. 278, 37–40 (2000).
    CAS PubMed Google Scholar
  117. Vasudevan, N., Kow, L. M. & Pfaff, D. W. Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line. Proc. Natl Acad. Sci. USA 98, 12267–12271 (2001). The synergy between rapid nongenomic and delayed genomic effects of the same steroid is shown in this study.
    CAS PubMed PubMed Central Google Scholar
  118. Nichols, M. et al. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J. 11, 3337–3346 (1992).
    CAS PubMed PubMed Central Google Scholar
  119. Christ, M. et al. Aldosterone, not estradiol, is the physiological agonist for rapid increases in cAMP in vascular smooth muscle cells. Circulation 99, 1485–1491 (1999).
    CAS PubMed Google Scholar
  120. Rowan, B. G., Garrison, N., Weigel, N. L. & O'Malley, B. W. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol. Cell. Biol. 20, 8720–8730 (2000).
    CAS PubMed PubMed Central Google Scholar
  121. Schmidt, B. M. et al. Interaction of rapid nongenomic cardiovascular aldosterone effects with the adrenergic system. J. Clin. Endocrinol. Metab. 86, 761–767 (2001).
    CAS PubMed Google Scholar
  122. Zange, J., Müller, K., Gerzer, R., Sippel, K. & Wehling, M. Nongenomic effects of aldosterone on phosphocreatine levels in human calf muscle during recovery from exercise. J. Clin. Endocrinol. Metab. 81, 4296–4300 (1996).
    CAS PubMed Google Scholar
  123. Oberleithner, H., Reinhardt, J., Schillers, H., Pagel, P. & Schneider, S. W. Aldosterone and nuclear volume cycling. Cell Physiol. Biochem. 10, 429–434 (2000).
    CAS PubMed Google Scholar

Download references