Nongenomic actions of steroid hormones (original) (raw)
References
Selye, H. Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology30, 437–453 (1942). The first detailed report of rapid steroid action in addition to a delayed action — a fine example of careful scientific work that was unbiased by preconceived ideas. CAS Google Scholar
Klein, K. & Henk, W. Klinisch-experimentelle Untersuchungen über den Einfluβ von Aldosteron auf Hämodynamik und Gerinnung. Z. Kreisl. Forsch.52, 40–53 (1963). CAS Google Scholar
Spach, C. & Streeten, D. H. Retardation of sodium exchange in dog erythrocytes by physiological concentrations of aldosterone, in vitro. J. Clin. Invest.43, 217–227 (1964). CASPubMedPubMed Central Google Scholar
Beato, M. Gene regulation by steroid hormones. Cell56, 335–344 (1989). An excellent account of the direct genomic action of classical steroid receptors. CASPubMed Google Scholar
Losel, R. M. et al. Nongenomic steroid action: controversies, questions and answers? Physiol. Rev. (in the press).
Meyer, C., Schmid, R., Scriba, P. C. & Wehling, M. Purification and partial sequencing of high affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem.239, 726–731 (1996). CASPubMed Google Scholar
Falkenstein, E., Norman, A. W. & Wehling, M. Mannheim classification of nongenomically initiated (rapid) steroid action(s). J. Clin. Endocrinol. Metab.85, 2072–2075 (2000). The classification scheme outlined in this work should enable nongenomic responses to be categorized. CASPubMed Google Scholar
Masui, Y. & Markert, C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool.177, 129–145 (1971). CASPubMed Google Scholar
Finidori-Lepicard, J., Schorderet-Slatkine, S., Hanoune, J. & Baulieu, E. E. Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature292, 255–257 (1981). CASPubMed Google Scholar
Sadler, S. E. & Maller, J. L. Progesterone inhibits adenylate cyclase in Xenopus oocytes. Action on the guanine nucleotide regulatory protein. J. Biol. Chem.256, 6368–6373 (1981). CASPubMed Google Scholar
Maller, J. L. & Krebs, E. G. Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem.252, 1712–1718 (1977). CASPubMed Google Scholar
Bagowski, C. P., Myers, J. W. & Ferrell, J. E. Jr. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J. Biol. Chem.276, 37708–37714 (2001). CASPubMed Google Scholar
Osman, R. A., Andria, M. L., Jones, A. D. & Meizel, S. Steroid induced exocytosis: the human sperm acrosome reaction. Biochem. Biophys. Res. Commun.160, 828–833 (1989). This study reports on the identification of progesterone as an acrosome-reaction-inducing compound present in human follicular fluid. CASPubMed Google Scholar
Meizel, S. & Turner, K. O. Progesterone acts at the plasma membrane of human sperm. Mol. Cell. Endocrinol.77, R1–R5 (1991). CASPubMed Google Scholar
Castilla, J. A. et al. Undetectable expression of genomic progesterone receptor in human spermatozoa. Hum. Reprod.10, 1757–1760 (1995). CASPubMed Google Scholar
Luconi, M. et al. Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J. Clin. Endocrinol. Metab.83, 877–885 (1998). CASPubMed Google Scholar
Sabeur, K., Edwards, D. P. & Meizel, S. Human sperm plasma membrane progesterone receptor(s) and the acrosome reaction. Biol. Reprod.54, 993–1001 (1996). CASPubMed Google Scholar
Sachdeva, G., Shah, C. A., Kholkute, S. D. & Puri, C. P. Detection of progesterone receptor transcript in human spermatozoa. Biol. Reprod.62, 1610–1614 (2000). CASPubMed Google Scholar
Blackmore, P. F., Fisher, J. F., Spilman, C. H. & Bleasdale, J. E. Unusual steroid specificity of the cell surface progesterone receptor on human sperm. Mol. Pharmacol.49, 727–739 (1996). The differences in steroid selectivity between the classical and the nonclassical sperm progesterone receptors have been studied with a large set of steroids. CASPubMed Google Scholar
Blackmore, P. F., Neulen, J., Lattanzio, F. & Beebe, S. J. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J. Biol. Chem.266, 18655–18659 (1991). CASPubMed Google Scholar
Baldi, E. et al. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J. Androl.12, 323–330 (1991). CASPubMed Google Scholar
Serres, C., Yang, J. & Jouannet, P. RU486 and calcium fluxes in human spermatozoa. Biochem. Biophys. Res. Commun.204, 1009–1015 (1994). CASPubMed Google Scholar
Blackmore, P. F. & Lattanzio, F. A. Cell surface localization of a novel non-genomic progesterone receptor on the head of human sperm. Biochem. Biophys. Res. Commun.181, 331–336 (1991). CASPubMed Google Scholar
Falkenstein, E. et al. Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology140, 5999–6002 (1999). CASPubMed Google Scholar
Falkenstein, E., Meyer, C., Eisen, C., Scriba, P. C. & Wehling, M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem. Biophys. Res. Commun.229, 86–89 (1996). CASPubMed Google Scholar
Krebs, C. J., Jarvis, E. D., Chan, J., Lydon, J. P., Ogawa, S. & Pfaff, D. W. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc. Natl Acad. Sci. USA97, 12816–12821 (2000). CASPubMedPubMed Central Google Scholar
Boonyaratanakornkit, V. et al. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol. Cell8, 269–280 (2001). CASPubMed Google Scholar
Pietras, R. J. & Szego, C. M. Endometrial cell calcium and oestrogen action. Nature253, 357–359 (1975). CASPubMed Google Scholar
Perret, S., Dockery, P. & Harvey, B. J. 17β-oestradiol stimulates capacitative Ca2+ entry in human endometrial cells. Mol. Cell. Endocrinol.176, 77–84 (2001). CASPubMed Google Scholar
Morley, P., Whitfield, J. F., Vanderhyden, B. C., Tsang, B. K. & Schwartz, J. L. A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology131, 1305–1312 (1992). CASPubMed Google Scholar
Tesarik, J. & Mendoza, C. Nongenomic effects of 17β-estradiol on maturing human oocytes: relationship to oocyte developmental potential. J. Clin. Endocrinol. Metab.80, 1438–1443 (1995). CASPubMed Google Scholar
Pietras, R. J. & Szego, C. M. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature265, 69–72 (1977). CASPubMed Google Scholar
Reis, S. E. et al. Ethinyl estradiol acutely attenuates abnormal coronary vasomotor responses to acetylcholine in postmenopausal women. Circulation89, 52–60 (1994). CASPubMed Google Scholar
Salas, E. et al. Endothelium-independent relaxation by 17-α-estradiol of pig coronary arteries. Eur. J. Pharmacol.258, 47–55 (1994). CASPubMed Google Scholar
Shaul, P. W. Rapid activation of endothelial nitric oxide synthase by estrogen. Steroids64, 28–34 (1999). An overview of the essential properties of NOS activation by oestradiol. CASPubMed Google Scholar
Caulin-Glaser, T., Garcia-Cardena, G., Sarrel, P., Sessa, W. C. & Bender, J. R. 17β-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ. Res.81, 885–892 (1997). CASPubMed Google Scholar
Chen, Z. et al. Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Invest.103, 401–406 (1999). CASPubMedPubMed Central Google Scholar
Haynes, M. P. et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase–Akt pathway in human endothelial cells. Circ. Res.87, 677–682 (2000). CASPubMed Google Scholar
Wyckoff, M. H. et al. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Gα(i). J. Biol. Chem.276, 27071–27076 (2001). CASPubMed Google Scholar
Russell, K. S., Haynes, M. P., Sinha, D., Clerisme, E. & Bender, J. R. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc. Natl Acad. Sci. USA97, 5930–5935 (2000). CASPubMedPubMed Central Google Scholar
Razandi, M., Oh, P., Pedram, A., Schnitzer, J. & Levin, E. R. ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol.16, 100–115 (2002). CASPubMed Google Scholar
Chambliss, K. L. et al. Estrogen receptor α and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res.87, E44–E52 (2000). CASPubMed Google Scholar
Toran-Allerand, C. D., Singh, M. & Setalo, G. Jr. Novel mechanisms of estrogen action in the brain: new players in an old story. Front. Neuroendocrinol.20, 97–121 (1999). CASPubMed Google Scholar
Chambliss, K. L., Yuhanna, I. S., Anderson, R. G., Mendelsohn, M. E. & Shaul, P. W. ERβ has nongenomic action in caveolae. Mol. Endocrinol.16, 938–946 (2002). CASPubMed Google Scholar
Shughrue, P. J., Askew, G. R., Dellovade, T. L. & Merchenthaler, I. Estrogen-binding sites and their functional capacity in estrogen receptor double knockout mouse brain. Endocrinology143, 1643–1650 (2002). CASPubMed Google Scholar
Pedram, A., Razandi, M., Aitkenhead, M., Hughes, C. C. & Levin, E. R. Integration of the non-genomic and genomic actions of estrogen: membrane initiated signaling by steroid (MISS) to transcription and cell biology. J. Biol. Chem. (in the press).
Wehling, M., Armanini, D., Strasser, T. & Weber, P. C. Effect of aldosterone on sodium and potassium concentrations in human mononuclear leukocytes. Am. J. Physiol.252, E505–E508 (1987). CASPubMed Google Scholar
Wehling, M., Käsmayr, J. & Theisen, K. Rapid effects of mineralocorticoids on sodium-proton exchanger: genomic or nongenomic pathway? Am. J. Physiol.260, E719–E726 (1991). CASPubMed Google Scholar
Wehling, M., Kuhls, S. & Armanini, D. Volume regulation of human lymphocytes by aldosterone in isotonic media. Am. J. Physiol.257, E170–E174 (1989). CASPubMed Google Scholar
Wehling, M., Ulsenheimer, A., Schneider, M., Neylon, C. & Christ, M. Rapid effects of aldosterone on free intracellular calcium in vascular smooth muscle and endothelial cells: subcellular localization of calcium elevations by single cell imaging. Biochem. Biophys. Res. Commun.204, 475–481 (1994). CASPubMed Google Scholar
Wehling, M. Specific, nongenomic actions of steroid hormones. Annu. Rev. Physiol.59, 365–393 (1997). CASPubMed Google Scholar
Haseroth, K. et al. Rapid nongenomic effects of aldosterone in mineralocorticoid-receptor- knockout mice. Biochem. Biophys. Res. Commun.266, 257–261 (1999). CASPubMed Google Scholar
Alzamora, R., Michea, L. & Marusic, E. T. Role of 11β-hydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension35, 1099–1104 (2000). CASPubMed Google Scholar
Peterfalvi, M., Torelli, V., Fournex, R., Rousseau, G., Claire, M., Michaud, A. & Corvol, P. Importance of the lactonic ring in the activity of steroidal antialdosterones. Biochem. Pharmacol.29, 353–357 (1980). CASPubMed Google Scholar
Estrada, M., Liberona, J. L., Miranda, M. & Jaimovich, E. Aldosterone- and testosterone-mediated intracellular calcium response in skeletal muscle cell cultures. Am. J. Physiol. Endocrinol. Metab.279, E132–E139 (2000). CASPubMed Google Scholar
Harvey, B. J. & Higgins, M. Nongenomic effects of aldosterone on Ca2+ in M-1 cortical collecting duct cells. Kidney Int.57, 1395–1403 (2000). CASPubMed Google Scholar
Oberleithner, H. Aldosterone and nuclear signaling in kidney. Steroids64, 42–50 (1999). CASPubMed Google Scholar
Barbato, J. C., Mulrow, P. J., Shapiro, J. I. & Franco-Saenz, R. Rapid effects of aldosterone and spironolactone in the isolated working rat heart. Hypertension40, 130–135 (2002). In this paper, aldosterone and spironolactone are shown to rapidly modulate cardiac function, which might have significance for cardiac diseases. CASPubMed Google Scholar
Orchinik, M., Murray, T. F. & Moore, F. L. A corticosteroid receptor in neuronal membranes. Science252, 1848–1851 (1991). CASPubMed Google Scholar
Moore, F. L. Amphibian model system for problems in behavioral neuroendocrinology. J. Exp. Zool. Suppl.4, 157–158 (1990). CASPubMed Google Scholar
Evans, S. J., Searcy, B. T. & Moore, F. L. A subset of κ opioid ligands bind to the membrane glucocorticoid receptor in an amphibian brain. Endocrinology141, 2294–2300 (2000). CASPubMed Google Scholar
Evans, S. J., Murray, T. F. & Moore, F. L. Partial purification and biochemical characterization of a membrane glucocorticoid receptor from an amphibian brain. J. Steroid Biochem. Mol. Biol.72, 209–221 (2000). CASPubMed Google Scholar
Hinz, B. & Hirschelmann, R. Rapid non-genomic feedback effects of glucocorticoids on CRF-induced ACTH secretion in rats. Pharm. Res.17, 1273–1277 (2000). CASPubMed Google Scholar
Buttgereit, F., Burmester, G. R. & Brand, M. D. Bioenergetics of immune functions: fundamental and therapeutic aspects. Immunol. Today21, 192–199 (2000). CASPubMed Google Scholar
Gametchu, B. Glucocorticoid receptor-like antigen in lymphoma cell membranes: correlation to cell lysis. Science236, 456–461 (1987). CASPubMed Google Scholar
Gametchu, B., Watson, C. S. & Wu, S. Use of receptor antibodies to demonstrate membrane glucocorticoid receptor in cells from human leukemic patients. FASEB J.7, 1283–1292 (1993). CASPubMed Google Scholar
Watson, C. S. & Gametchu, B. Membrane estrogen and glucocorticoid receptors — implications for hormonal control of immune function and autoimmunity. Int. Immunopharmacol.1, 1049–1063 (2001). CASPubMed Google Scholar
Buttgereit, F., Brand, M. D. & Burmester, G. R. Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochem. Pharmacol.58, 363–368 (1999). CASPubMed Google Scholar
Hafezi-Moghadam, A. et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nature Med.8, 473–479 (2002). CASPubMed Google Scholar
Nemere, I., Yoshimoto, Y. & Norman, A. W. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3 . Endocrinology115, 1476–1483 (1984). CASPubMed Google Scholar
Norman, A. W. et al. Demonstration that 1β,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1α,25-dihydroxyvitamin D3 . J. Biol. Chem.268, 20022–20030 (1993). This is the first description of a selective antagonist for nongenomic vitamin D responses. CASPubMed Google Scholar
Norman, A. W., Song, X., Zanello, L., Bula, C. & Okamura, W. H. Rapid and genomic biological responses are mediated by different shapes of the agonist steroid hormone, 1α,25(OH)2vitamin D3 . Steroids64, 120–128 (1999). CASPubMed Google Scholar
Farach-Carson, M. C. & Ridall, A. L. Dual 1,25-dihydroxyvitamin D3 signal response pathways in osteoblasts: cross-talk between genomic and membrane-initiated pathways. Am. J. Kidney Dis.31, 729–742 (1998). CASPubMed Google Scholar
Norman, A. W. et al. Different shapes of the steroid hormone 1α,25(OH)2-vitamin D3 act as agonists for two different receptors in the vitamin D endocrine system to mediate genomic and rapid responses. Steroids66, 147–158 (2001). CASPubMed Google Scholar
Boyan, B. D. et al. Hybrid structural analogues of 1,25-(OH)2D3 regulate chondrocyte proliferation and proteoglycan production as well as protein kinase C through a nongenomic pathway. J. Cell Biochem.66, 457–470 (1997). CASPubMed Google Scholar
Greising, D. M., Schwartz, Z., Posner, G. H., Sylvia, V. L., Dean, D. D. & Boyan, B. D. A-ring analogues of 1, 25-(OH)2D3 with low affinity for the vitamin D receptor modulate chondrocytes via membrane effects that are dependent on cell maturation. J. Cell Physiol.171, 357–367 (1997). CASPubMed Google Scholar
Lieberherr, M. Effects of vitamin D3 metabolites on cytosolic free calcium in confluent mouse osteoblasts. J. Biol. Chem.262, 13168–13173 (1987). CASPubMed Google Scholar
Caffrey, J. M. & Farach-Carson, M. C. Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J. Biol. Chem.264, 20265–20274 (1989). CASPubMed Google Scholar
Civitelli, R. et al. Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells. Endocrinology127, 2253–2262 (1990). CASPubMed Google Scholar
Baran, D. T. et al. 1α,25-dihydroxyvitamin D3 rapidly increases cytosolic calcium in clonal rat osteosarcoma cells lacking the vitamin D receptor. J. Bone Miner. Res.6, 1269–1275 (1991). CASPubMed Google Scholar
Le Mellay, V., Grosse, B. & Lieberherr, M. Phospholipase Cβ and membrane action of calcitriol and estradiol. J. Biol. Chem.272, 11902–11907 (1997). CASPubMed Google Scholar
Sylvia, V. L. et al. Nongenomic regulation of protein kinase C isoforms by the vitamin D metabolites 1α,25-(OH)2D3 and 24R,25-(OH)2D3 . J. Cell. Physiol.167, 380–393 (1996). CASPubMed Google Scholar
Wali, R. K., Baum, C. L., Sitrin, M. D. & Brasitus, T. A. 1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium. J. Clin. Invest.85, 1296–1303 (1990). CASPubMedPubMed Central Google Scholar
Marcinkowska, E., Wiedlocha, A. & Radzikowski, C. 1,25-Dihydroxyvitamin D3 induced activation and subsequent nuclear translocation of MAPK is upstream regulated by PKC in HL-60 cells. Biochem. Biophys. Res. Commun.241, 419–426 (1997). CASPubMed Google Scholar
de Boland, A. R. & Norman, A. Evidence for involvement of protein kinase C and cyclic adenosine 3′,5′ monophosphate-dependent protein kinase in the 1,25-dihydroxy-vitamin D3-mediated rapid stimulation of intestinal calcium transport, (transcaltachia). Endocrinology127, 39–45 (1990). CASPubMed Google Scholar
Vazquez, G., Boland, R. & de Boland, A. R. Modulation by 1,25(OH)2-vitamin D3 of the adenylyl cyclase/cyclic AMP pathway in rat and chick myoblasts. Biochim. Biophys. Acta1269, 91–97 (1995). PubMed Google Scholar
Fernandez, L. M., Massheimer, V. & de Boland, A. R. Cyclic AMP-dependent membrane protein phosphorylation and calmodulin binding are involved in the rapid stimulation of muscle calcium uptake by 1,25-dihydroxyvitamin D3 . Calcif. Tissue Int.47, 314–319 (1990). CASPubMed Google Scholar
Selles, J. & Boland, R. Evidence on the participation of the 3′,5′-cyclic AMP pathway in the non-genomic action of 1,25-dihydroxy-vitamin D3 in cardiac muscle. Mol. Cell. Endocrinol.82, 229–235 (1991). CASPubMed Google Scholar
Massheimer, V., Boland, R. & de Boland, A. R. Rapid 1,25(OH)2-vitamin D3 stimulation of calcium uptake by rat intestinal cells involves a dihydropyridine-sensitive cAMP-dependent pathway. Cell Signal.6, 299–304 (1994). CASPubMed Google Scholar
Segal, J., Schwartz, H. & Gordon, A. The effect of triiodothyronine on 2-deoxy-D-(1-3H)glucose uptake in cultured chick embryo heart cells. Endocrinology101, 143–149 (1977). CASPubMed Google Scholar
Segal, J. A rapid, extranuclear effect of 3,5,3′-triiodothyronine on sugar uptake by several tissues in the rat in vivo. Evidence for a physiological role for the thyroid hormone action at the level of the plasma membrane. Endocrinology124, 2755–2764 (1989). CASPubMed Google Scholar
Segal, J. In vivo effect of 3,5,3′-triiodothyronine on calcium uptake in several tissues in the rat: evidence for a physiological role for calcium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane. Endocrinology127, 17–24 (1990). CASPubMed Google Scholar
Davis, F. B., Cody, V., Davis, P. J., Borzynski, L. J. & Blas, S. D. Stimulation by thyroid hormone analogues of red blood cell Ca2+-ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J. Biol. Chem.258, 12373–12377 (1983). CASPubMed Google Scholar
Rubinacci, A., Divieti, P., Lodigiani, S., De Ponti, A. & Samaja, M. Thyroid hormones and active calcium transport of inside-out red cell membrane vesicles. Biochem. Med. Metab. Biol.48, 235–240 (1992). CASPubMed Google Scholar
Davis, P. J., Davis, F. B. & Lawrence, W. D. Thyroid hormone regulation of membrane Ca2+-ATPase activity. Endocr. Res.15, 651–682 (1989). CASPubMed Google Scholar
Lawrence, W. D., Schoenl, M. & Davis, P. J. Stimulation in vitro of rabbit erythrocyte cytosol phospholipid-dependent protein kinase activity. A novel action of thyroid hormone. J. Biol. Chem.264, 4766–4768 (1989). CASPubMed Google Scholar
Lin, H. Y., Thacorf, H. R., Davis, F. B. & Davis, P. J. Potentiation by thyroxine of interferon-γ-induced antiviral state requires PKA and PKC activities. Am. J. Physiol.271, C1256–C1261 (1996). CASPubMed Google Scholar
Kavok, N. S., Krasilnikova, O. A. & Babenko, N. A. Thyroxine signal transduction in liver cells involves phospholipase C and phospholipase D activation. Genomic independent action of thyroid hormone. BMC Cell. Biol.2, 5 (2001). CASPubMedPubMed Central Google Scholar
Lin, H. Y., Davis, F. B., Gordinier, J. K., Martino, L. J. & Davis, P. J. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am. J. Physiol.276, C1014–C1024 (1999). CASPubMed Google Scholar
Lin, H. Y., Shih, A., Davis, F. B. & Davis, P. J. Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells. Biochem. J.338, 427–432 (1999). CASPubMedPubMed Central Google Scholar
Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J. & Davis, F. B. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem.275, 38032–38039 (2000). CASPubMed Google Scholar
Ashizawa, K., McPhie, P., Lin, K. H. & Cheng, S. Y. An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1,6-bisphosphate. Biochemistry30, 7105–7111 (1991). CASPubMed Google Scholar
Arnold, S., Goglia, F. & Kadenbach, B. 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur. J. Biochem.252, 325–330 (1998). CASPubMed Google Scholar
Baulieu, E. E. Neurosteroids: a new function in the brain. Biol. Cell71, 3–10 (1991). An early account of the origin and action of neurosteroids. CASPubMed Google Scholar
Friess, E., Tagaya, H., Trachsel, L., Holsboer, F. & Rupprecht, R. Progesterone-induced changes in sleep in male subjects. Am. J. Physiol.272, E885–E891 (1997). CASPubMed Google Scholar
Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L. & Paul, S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science232, 1004–1007 (1986). CASPubMed Google Scholar
Rupprecht, R. The neuropsychopharmacological potential of neuroactive steroids. J. Psychiatr. Res.31, 297–314 (1997). CASPubMed Google Scholar
Frye, C. A. The role of neurosteroids and nongenomic effects of progestins in the ventral tegmental area in mediating sexual receptivity of rodents. Horm. Behav.40, 226–233 (2001). CASPubMed Google Scholar
Mathis, C., Paul, S. M. & Crawley, J. N. The neurosteroid pregnenolone sulfate blocks NMDA antagonist-induced deficits in a passive avoidance memory task. Psychopharmacology (Berl.)116, 201–206 (1994). CAS Google Scholar
Reddy, D. S., Kaur, G. & Kulkarni, S. K. σ(σ1) receptor mediated anti-depressant-like effects of neurosteroids in the Porsolt forced swim test. Neuroreport9, 3069–3073 (1998). CASPubMed Google Scholar
Weaver, C. E. Jr, Park-Chung, M., Gibbs, T. T. & Farb, D. H. 17β-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res.761, 338–341 (1997). CASPubMed Google Scholar
Crawley, J. N., Glowa, J. R., Majewska, M. D. & Paul, S. M. Anxiolytic activity of an endogenous adrenal steroid. Brain Res.398, 382–385 (1986). CASPubMed Google Scholar
Britton, K. T., Page, M., Baldwin, H. & Koob, G. F. Anxiolytic activity of steroid anesthetic alphaxalone. J. Pharmacol. Exp. Ther.258, 124–129 (1991). CASPubMed Google Scholar
Wu, F. S., Gibbs, T. T. & Farb, D. H. Inverse modulation of γ-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmacol.37, 597–602 (1990). CASPubMed Google Scholar
Wu, F. S., Chen, S. C. & Tsai, J. J. Competitive inhibition of the glycine-induced current by pregnenolone sulfate in cultured chick spinal cord neurons. Brain Res.750, 318–320 (1997). CASPubMed Google Scholar
Wu, F. S., Lai, C. P. & Liu, B. C. Non-competitive inhibition of 5-HT3 receptor-mediated currents by progesterone in rat nodose ganglion neurons. Neurosci. Lett.278, 37–40 (2000). CASPubMed Google Scholar
Vasudevan, N., Kow, L. M. & Pfaff, D. W. Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line. Proc. Natl Acad. Sci. USA98, 12267–12271 (2001). The synergy between rapid nongenomic and delayed genomic effects of the same steroid is shown in this study. CASPubMedPubMed Central Google Scholar
Nichols, M. et al. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J.11, 3337–3346 (1992). CASPubMedPubMed Central Google Scholar
Christ, M. et al. Aldosterone, not estradiol, is the physiological agonist for rapid increases in cAMP in vascular smooth muscle cells. Circulation99, 1485–1491 (1999). CASPubMed Google Scholar
Rowan, B. G., Garrison, N., Weigel, N. L. & O'Malley, B. W. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol. Cell. Biol.20, 8720–8730 (2000). CASPubMedPubMed Central Google Scholar
Schmidt, B. M. et al. Interaction of rapid nongenomic cardiovascular aldosterone effects with the adrenergic system. J. Clin. Endocrinol. Metab.86, 761–767 (2001). CASPubMed Google Scholar
Zange, J., Müller, K., Gerzer, R., Sippel, K. & Wehling, M. Nongenomic effects of aldosterone on phosphocreatine levels in human calf muscle during recovery from exercise. J. Clin. Endocrinol. Metab.81, 4296–4300 (1996). CASPubMed Google Scholar
Oberleithner, H., Reinhardt, J., Schillers, H., Pagel, P. & Schneider, S. W. Aldosterone and nuclear volume cycling. Cell Physiol. Biochem.10, 429–434 (2000). CASPubMed Google Scholar