Acquisition of siderophores in Gram-negative bacteria (original) (raw)
Ratledge, C. & Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol.54, 881–941 (2000). ArticleCASPubMed Google Scholar
Crichton, R. R. Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences (John Wiley & Sons, New York, 2001). Google Scholar
Braun, V. & Killmann, H. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci.24, 104–109 (1999). CASPubMed Google Scholar
Clarke, T. E., Tari, L. W. & Vogel, H. J. Structural biology of bacterial iron uptake systems. Curr. Top. Med. Chem.1, 7–30 (2001). CASPubMed Google Scholar
Kadner, R. J. Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol. Microbiol.4, 2027–2033 (1990). This review, together with references 6 and 11 – 14, illustrates the evolution of the field of TonB-dependent transport during the past decade. It describes the various permeation mechanisms that were proposed before the determination of the structure of the outer-membrane receptors. CASPubMed Google Scholar
Postle, K. TonB and the Gram-negative dilemma. Mol. Microbiol.4, 2019–2025 (1990). CASPubMed Google Scholar
Nikaido, H. in Escherichia coli and Salmonella typhimurium: cellular and molecular biology (ed. Neidhardt, F.) 29–47 (American Society for Microbiology, Washington DC, 1996). Google Scholar
Beveridge, T. J. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol.181, 4725–4733 (1999). CASPubMedPubMed Central Google Scholar
Koebnik, R., Locher, K. P. & van Gelder, P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol.37, 239–253 (2000). CASPubMed Google Scholar
Bradbeer, C. The proton motive force drives the outer membrane transport of cobalamin in Escherichia coli. J. Bacteriol.175, 3146–3150 (1993). CASPubMedPubMed Central Google Scholar
Postle, K. TonB protein and energy transduction between membranes. J. Bioenerg. Biomembr.25, 591–601 (1993). CASPubMed Google Scholar
Klebba, P. E., Rutz, J. M., Liu, J. & Murphy, C. K. Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J. Bioenerg. Biomembr.25, 603–611 (1993). CASPubMed Google Scholar
Braun, V. Energy-coupled transport and signal transduction through the Gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol. Rev.16, 295–307 (1995). CASPubMed Google Scholar
Moeck, G. & Coulton, J. W. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol. Microbiol.28, 675–681 (1998). CASPubMed Google Scholar
Buchanan, S. K. β-Barrel proteins from bacterial outer membranes: structure, function and refolding. Curr. Opin. Struct. Biol.9, 455–461 (1999). CASPubMed Google Scholar
Schulz, G. E. β-barrel membrane proteins. Curr. Opin. Struct. Biol.10, 443–447 (2000). CASPubMed Google Scholar
Cowan, S. W. et al. Crystal structures explain functional properties of two E. coli porins. Nature358, 727–733 (1992). CASPubMed Google Scholar
Schirmer, T., Keller, T. A., Wang, Y. F. & Rosenbusch, J. P. Structural basis for sugar translocation through maltoporin channels at 3.1Å resolution. Science267, 512–514 (1995). CASPubMed Google Scholar
Klebba, P. E. & Newton, S. M. C. Mechanisms of solute transport through the outer membrane proteins: burning down the house. Curr. Biol.1, 238–248 (1998). CAS Google Scholar
Schirmer, T. General and specific porins from bacterial outer membranes. J. Struct. Biol.121, 101–109 (1998). CASPubMed Google Scholar
Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K. & Welte, W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science282, 2215–2220 (1998). CASPubMed Google Scholar
Locher, K. P. et al. Transmembrane signalling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell95, 771–778 (1998). References 22 and 23 reported simultaneously the atomic structures of the ferrichrome receptor and transporter FhuA in the ligand-free and -bound states, revealing for the first time the existence of an additional protein domain that blocked the permeation pathway, and showing its role in signalling. ArticleCASPubMed Google Scholar
Buchanan, S. K. et al. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nature Struct. Biol.6, 56–63 (1999). This paper reported the atomic structure of the enterobactin receptor and transporter FepA, verifying the common protein architecture of TonB-dependent receptors. CASPubMed Google Scholar
Ferguson, A. D. et al. Structural basis of gating by the outer membrane transporter FecA. Science295, 1715–1719 (2002). This paper reported the atomic structure of FecA in the ligand-free and -bound states, revealing allosteric changes in the extracellular domain that seem to correspond to a gating mechanism, in addition to changes that involved the plug domain as reported previously. CASPubMed Google Scholar
Scott, D. C. et al. Exchangeability of N-termini in the ligand-gated porins of Escherichia coli. J. Biol. Chem.276, 13025–13033 (2001). CASPubMed Google Scholar
Moeck, G., Coulton, J. W. & Postle, K. Cell envelope signalling in Escherichia coli: ligand binding to the ferrichrome-iron receptor FhuA promotes interaction with the energy-transducing protein TonB. J. Biol. Chem.272, 28391–28397 (1997). CASPubMed Google Scholar
Braun, V. Pumping iron through cell membranes. Science282, 2202–2203 (1998). CASPubMed Google Scholar
Tuckman, M. & Osburne, M. S. In vivo inhibition of TonB-dependent processes by a TonB box consensus pentapeptide. J. Bacteriol.174, 320–323 (1992). CASPubMedPubMed Central Google Scholar
Moeck, G. et al. Ligand-induced conformational change in the ferrichrome-iron receptor of Escherichia coli. Mol. Microbiol.22, 459–471 (1996). CASPubMed Google Scholar
Larsen, R. A., Foster-Hartnett, D., McIntosh, M. A. & Postle, K. Regions of Escherichia coli TonB and FepA proteins essential for in vivo physical interactions. J. Bacteriol.179, 3213–3221 (1997). CASPubMedPubMed Central Google Scholar
Cadieux, N., Bradbeer, C. & Kadner, R. J. Sequence changes in the TonB box region of BtuB affect its transport activities and interaction with TonB protein. J. Bacteriol.182, 5954–5961 (2000). CASPubMedPubMed Central Google Scholar
Barnard, T. J., Watson, M. E. & McIntosh, M. A. Mutations in Escherichia coli receptor FepA reveal residues involved in ligand binding and transport. Mol. Microbiol.41, 527–536 (2001). CASPubMed Google Scholar
Merianos, H. J., Cadieux, N., Lin, C. H., Kadner, R. J. & Cafiso, D. S. Substrate-induced exposure of an energy-coupling motif of a membrane transporter. Nature Struct. Biol.7, 205–209 (2000). CASPubMed Google Scholar
Coggshall, K. A., Cadieux, N., Piedmont, C., Kadner, R. J. & Cafiso, D. S. Transport-defective mutations alter the conformation of the energy-coupling motif of an outer membrane transporter. Biochemistry40, 13964–13971 (2001). CASPubMed Google Scholar
Chimento, D. P., Mohanty, A. K., Kadner, R. J. & Wiener, M. C. Expression, purification, characterization and crystallization of the E. coli outer membrane cyanocobalamin transporter BtuB. Biophys. J.82, 2754A (2002). Google Scholar
Wiener, M. C., Chimento, D. P., Mohanty, A. K. & Kadner, R. J. The crystal structure of the E. coli outer membrane cyanocobalamin transporter BtuB. Biophys. J.82, 2514A (2002). Google Scholar
Braun, M., Killman, H. & Braun, V. The β-barrel domain of FhuAΔ5-160 is sufficient for TonB-dependent activities of Escherichia coli. Mol. Microbiol.33, 1037–1049 (1999). This paper, together with references 26 and 40, is concerned with the activity of receptors that either lack the plug domain or contain a non-native homologue, which illustrates the current debate about the functional relevance of this domain. CASPubMed Google Scholar
Bonhivers, M. et al. Stability studies of FhuA, a two-domain outer membrane protein from Escherichia coli. Biochemistry40, 2606–2613 (2001). CASPubMed Google Scholar
Vakharia, H. & Postle, K. FepA with globular domain deletions lacks activity. J. Bacteriol.184, 5508–5512 (2002). CASPubMedPubMed Central Google Scholar
Liu, J., Rutz, J. M., Klebba, P. E. & Feix, J. B. A site-directed spin-labeling study of ligand–induced conformational change in the ferric enterobactin receptor, FepA. Biochemistry33, 13274–13283 (1994). CASPubMed Google Scholar
Jiang, X. Q. et al. Ligand-specific opening of a gated-porin channel in the outer membrane of living bacteria. Science276, 1261–1264 (1997). CASPubMed Google Scholar
Bös, C., Lorenzen, D. & Braun, V. Specific in vivo labeling of cell surface-exposed protein loops: reactive cysteines in the predicted gating loop mark a ferrichrome binding site and a ligand-induced conformational change of the Escherichia coli FhuA protein. J. Bacteriol.180, 605–613 (1998). PubMedPubMed Central Google Scholar
Klug, C. S., Eaton, S. S., Eaton, G. R. & Feix, J. B. Ligand-induced conformational change in the ferric enterobactin receptor FepA as studied by site-directed spin labeling and time-domain ESR. Biochemistry37, 9016–9023 (1998). CASPubMed Google Scholar
Faraldo-Gómez, J. D., Smith, G. R. & Sansom, M. S. P. Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a study of the ferrichrome-free and bound states. Biophys. J. (in the press).
Karplus, M. & Petsko, G. A. Molecular dynamics simulations in biology. Nature347, 631–639 (1990). CASPubMed Google Scholar
Hansson, T., Oostenbrink, C. & Van Gunsteren, W. F. Molecular dynamics simulations. Curr. Opin. Struct. Biol.12, 190–196 (2002). CASPubMed Google Scholar
Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nature Struct. Biol.9, 646–652 (2002). CASPubMed Google Scholar
Folschweiller, N. et al. The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa. Mol. Membr. Biol.17, 123–133 (2000). CASPubMed Google Scholar
Schalk, I. J. et al. Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron-free ligand: implications for siderophore-mediated iron transport. Biochemistry38, 9357–9365 (1999). CASPubMed Google Scholar
Schalk, I. J. et al. Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: a new mechanism for membrane iron transport. Mol. Microbiol.39, 351–360 (2001). CASPubMed Google Scholar
Schalk, I. J., Abdallah, M. A. & Pattus, F. Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry41, 1663–1671 (2002). In the studies reported in references 51 – 53, FRET and radiolabelling techniques were used to characterize the association of the receptor FpvA with the siderophore pyoverdin, as well as to monitor its uptake and recycling into the medium. CASPubMed Google Scholar
Stintzi, A., Barnes, C., Jide, X. & Raymond, K. N. Microbial iron-transport via a siderophore shuttle: a membrane ion transport paradigm. Proc. Natl Acad. Sci. USA97, 10691–10696 (2000). CASPubMedPubMed Central Google Scholar
Braun, V. Avoidance of iron toxicity through regulation of bacterial iron transport. Biol. Chem.378, 779–786 (1997). CASPubMed Google Scholar
Escolar, L., Pérez-Martín, J. & de Lorenzo, V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol.181, 6223–6229 (1999). CASPubMedPubMed Central Google Scholar
Braun, V. Surface signalling: novel transcription initiation mechanism starting from the cell surface. Arch. Microbiol.167 (1997). This review and reference 59 describe the process whereby the transcription of the Fec uptake system is regulated by the presence of ferric citrate at the level of the cell surface.
Angerer, A. & Braun, V. Iron regulates transcription of the Escherichia coli ferric citrate transport genes directly and through the transcription initiation proteins. Arch. Microbiol.169, 483–490 (1998). CASPubMed Google Scholar
Enz, S., Mahren, S., Stroeher, U. W. & Braun, V. Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR and FecI regulatory proteins. J. Bacteriol.182, 637–646 (2000). CASPubMedPubMed Central Google Scholar
Stiefel, A. et al. Control of the ferric citrate transport system of Escherichia coli: mutations in region 2.1 of the FecI extracytoplasmic-function sigma factor suppress mutations in the FecR transmembrane regulatory protein. J. Bacteriol.183, 162–170 (2001). CASPubMedPubMed Central Google Scholar
Kim, I., Stiefel, A., Plantör, A., Angerer, A. & Braun, V. Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol. Microbiol.23, 333–344 (1997). CASPubMed Google Scholar
Howard, S. P., Herrmann, C., Stratilo, C. W. & Braun, V. In vivo synthesis of the periplasmic domain of TonB inhibits transport through the FecA and FhuA iron siderophore transporters of Escherichia coli. J. Bacteriol.183, 5885–5895 (2001). CASPubMedPubMed Central Google Scholar
Wang, C. & Newton, A. An additional step in the transport of iron defined by the tonb locus of Escherichia coli. J. Biol. Chem.246, 2147–2151 (1971). CASPubMed Google Scholar
Reynolds, P. R., Mottur, G. P. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli. Some observations on the roles of the gene products of btuc and tonb. J. Biol. Chem.255, 4313–4319 (1980). CASPubMed Google Scholar
Postle, K. & Skare, J. T. Escherichia coli TonB protein is exported from the cytoplasm without proteolytic cleavage of its amino terminus. J. Biol. Chem.263, 11000–11007 (1988). CASPubMed Google Scholar
Evans, J. S., Levine, B. A., Trayer, I. P., Dorman, C. J. & Higgins, C. F. Sequence-imposed structural constraints in the TonB protein of Escherichia coli. FEBS Lett.208, 211–216 (1986). CASPubMed Google Scholar
Brewer, S. et al. Structure and function of X-Pro dipeptide repeats in the TonB proteins of Salmonella typhimurium and Escherichia coli. J. Mol. Biol.216, 883–895 (1990). CASPubMed Google Scholar
Larsen, R. A., Wood, C. & Postle, K. The conserved proline-rich motif is not essential for energy transduction by Escherichia coli TonB protein. Mol. Microbiol.10, 943–953 (1993). CASPubMed Google Scholar
Holroyd, C. D. & Bradbeer, C. in Microbiology (ed. Schlessinger, D.) 21–23 (American Society for Microbiology, Washington D. C., 1984). Google Scholar
Larsen, R. A., Thomas, M. G. & Postle, K. Protonmotive force, ExbB and ligand-FepA drive conformational changes in TonB. Mol. Microbiol.31, 1809–1824 (1999). This paper presents evidence that supports a mechanism whereby TonB cycles between different conformations in response to the proton gradient across the cytoplasmic membrane, and proposes a model of energy transduction to the outer-membrane receptors. CASPubMed Google Scholar
Skare, J. T., Ahmer, B. M. M., Seachord, C. L., Darveau, R. P. & Postle, K. Energy transduction between membranes: TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. J. Biol. Chem.268, 16302–16308 (1993). CASPubMed Google Scholar
Larsen, R. A. et al. Identification of TonB homologs in the family Enterobacteriaceae and evidence for conservation of TonB-dependent energy transduction complexes. J. Bacteriol.178, 1363–1373 (1996). CASPubMedPubMed Central Google Scholar
Cadieux, N. & Kadner, R. J. Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. Proc. Natl Acad. Sci. USA96, 10673–10678 (1999). CASPubMedPubMed Central Google Scholar
Higgs, P. I. et al. TonB interacts with non-receptor proteins at the outer membrane of Escherichia coli. J. Bacteriol.184, 1640–1648 (2002). CASPubMedPubMed Central Google Scholar
Kampfenkel, K. & Braun, V. Membrane topology of the Escherichia coli ExbD protein. J. Bacteriol.174, 5485–5487 (1992). CASPubMedPubMed Central Google Scholar
Kampfenkel, K. & Braun, V. Topology of the ExbB protein in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem.268, 6050–6057 (1993). CASPubMed Google Scholar
Higgs, P. I., Myers, P. S. & Postle, K. Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J. Bacteriol.180, 6031–6038 (1998). CASPubMedPubMed Central Google Scholar
Higgs, P. I., Larsen, R. A. & Postle, K. Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA. Mol. Microbiol.44, 271–281 (2002). CASPubMed Google Scholar
Held, K. G. & Postle, K. ExbB and ExbD do not function independently in TonB-dependent energy transduction. J. Bacteriol.184, 5170–5173 (2002). References 77 – 79 are concerned with the topological characterization of the energy-transducing complex that is formed by the proteins TonB, ExbB and ExbD. CASPubMedPubMed Central Google Scholar
Karlsson, M., Hannavy, K. & Higgins, C. F. ExbB acts as a chaperone-like protein to stabilize TonB in the cytoplasm. Mol. Microbiol.8, 389–396 (1993). CASPubMed Google Scholar
Traub, I., Gaisser, S. & Braun, V. Activity domains of the TonB protein. Mol. Microbiol.8, 409–423 (1993). CASPubMed Google Scholar
Larsen, R. A., Thomas, M. G., Wood, G. E. & Postle, K. Partial suppression of an Escherichia coli TonB transmembrane domain mutation (ΔV17) by a missense mutation in ExbB. Mol. Microbiol.13, 627–640 (1994). CASPubMed Google Scholar
Braun, V. et al. Energy coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and leucine 132 in the periplasmic region and aspartate 25 in the transmembrane region are important for ExbD activity. J. Bacteriol.178, 2836–2845 (1996). CASPubMedPubMed Central Google Scholar
Larsen, R. A. & Postle, K. Conserved residues Ser16 and His20 and their relative positioning are essential for TonB activity, cross-linking of TonB with ExbB and the ability of TonB to respond to proton motive force. J. Biol. Chem.276, 8111–8117 (2001). CASPubMed Google Scholar
Chang, C., Mooser, A., Plückthun, A. & Wlodawer, A. Crystal structure of the dimeric C-terminal domain of TonB reveals a novel fold. J. Biol. Chem.276, 27535–27540 (2001). This paper reports the atomic structure of a carboxy-terminal fragment of TonB, revealing an unexpected dimeric form. CASPubMed Google Scholar
Moeck, G. & Letellier, L. Characterization of in vitro interactions between a truncated TonB protein from Escherichia coli and the outer membrane receptors FhuA and FepA. J. Bacteriol.183, 2755–2764 (2001). CASPubMedPubMed Central Google Scholar
Neilands, J. B. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem.270, 26723–26726 (1995). CASPubMed Google Scholar
Pattus, F. & Abdallah, M. A. Siderophores and iron-transport in microorganisms. J. Chin. Chem. Soc.47, 1–20 (2000). CAS Google Scholar
Roosenberg, J. M., Lin, Y. M., Lu, Y. & Miller, M. J. Studies and synthesis of siderophores, microbial iron chelators and analogs as potential drug delivery agents. Curr. Med. Chem.7, 159–197 (2000). CASPubMed Google Scholar
Ferguson, A. D. et al. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci.9, 956–963 (2000). CASPubMedPubMed Central Google Scholar
Ferguson, A. D. et al. Active transport of an antibiotic ryfamycin derivative by the outer membrane protein FhuA. Structure9, 707–716 (2001). CASPubMed Google Scholar
Braun, V. & Braun, M. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol5, 194–201 (2002). CASPubMed Google Scholar
Clarke, T. E., Braun, V., Winkelmann, G., Tari, L. W. & Vogel, H. J. X-ray crystallographic structures of the Escherichia coli periplasmic binding protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J. Biol. Chem.277, 13966–13972 (2002). CASPubMed Google Scholar
Kadner, R. J. in Escherichia coli and Salmonella typhimurium: cellular and molecular biology (ed. Neidhardt, F.) 58–87 (American Society for Microbiology, Washington DC, 1996). Google Scholar
Oliver, D. B. in Escherichia coli and Salmonella typhimurium: cellular and molecular biology (ed. Neidhardt, F.) 88–103 (American Society for Microbiology, Washington DC, 1996). Google Scholar
Park, J. T. in Escherichia coli and Salmonella typhimurium: cellular and molecular biology (ed. Neidhardt, F.) 48–57 (American Society for Microbiology, Washington DC, 1996). Google Scholar
Köster, W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12 . Res. Microbiol.152, 291–301 (2001). PubMed Google Scholar
Sprencel, C. et al. Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J. Bacteriol.182, 5359–5364 (2000). CASPubMedPubMed Central Google Scholar
Cadieux, N. et al. Identification of the periplasmic cobalamin-binding protein BtuF of Escherichia coli. J. Bacteriol.184, 706–717 (2002). CASPubMedPubMed Central Google Scholar
Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science296, 1091–1098 (2002). CASPubMed Google Scholar