Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell1, 193–202 (1998). ArticleCASPubMed Google Scholar
Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell102, 67–76 (2000). ArticleCASPubMed Google Scholar
Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell3, 687–695 (1999). ArticleCASPubMed Google Scholar
Goldknopf, I. L. et al. Isolation and characterization of protein A24, a 'histone-like' non-histone chromosomal protein. J. Biol. Chem.250, 7182–7187 (1975). ArticleCASPubMed Google Scholar
Goldknopf, I. L. & Busch, H. Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24. Proc. Natl Acad. Sci. USA74, 864–868 (1977). ArticleCASPubMedPubMed Central Google Scholar
Hunt, L. T. & Dayhoff, M. O. Amino-terminal sequence identity of ubiquitin and the nonhistone component of nuclear protein A24. Biochem. Biophys. Res. Commun.74, 650–655 (1977). ArticleCASPubMed Google Scholar
Levinger, L. & Varshavsky, A. Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell28, 375–385 (1982). ArticleCASPubMed Google Scholar
Nickel, B. E., Allis, C. D. & Davie, J. R. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry28, 958–963 (1989). ArticleCASPubMed Google Scholar
Davie, J. R. & Murphy, L. C. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry29, 4752–4757 (1990). ArticleCASPubMed Google Scholar
Davie, J. R., Lin, R. & Allis, C. D. Timing of the appearance of ubiquitinated histones in developing new macronuclei of Tetrahymena thermophila. Biochem. Cell Biol.69, 66–71 (1991). ArticleCASPubMed Google Scholar
Vavra, K. J., Allis, C. D. & Gorovsky, M. A. Regulation of histone acetylation in Tetrahymena macro- and micronuclei. J. Biol. Chem.257, 2591–2598 (1982). ArticleCASPubMed Google Scholar
Huang, S. Y. et al. The active immunoglobulin κ chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc. Natl Acad. Sci. USA83, 3738–3742 (1986). ArticleCASPubMedPubMed Central Google Scholar
Pham, A. D. & Sauer, F. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science289, 2357–2360 (2000). ArticleCASPubMed Google Scholar
Chen, H. Y., Sun, J. M., Zhang, Y., Davie, J. R. & Meistrich, M. L. Ubiquitination of histone H3 in elongating spermatids of rat testes. J. Biol. Chem.273, 13165–13169 (1998). ArticleCASPubMed Google Scholar
Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science287, 501–504 (2000). Identified Rad6 as a Ub-conjugating enzyme for histone H2B in budding yeast and opened the way for genetic analysis of histone ubiquitylation. ArticleCASPubMed Google Scholar
Turner, S. D. et al. The E2 ubiquitin conjugase Rad6 is required for the ArgR/Mcm1 repression of ARG1 transcription. Mol. Cell. Biol.22, 4011–4019 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sun, Z. W. & Hampsey, M. A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics152, 921–932 (1999). ArticleCASPubMedPubMed Central Google Scholar
Huang, H., Kahana, A., Gottschling, D. E., Prakash, L. & Liebman, S. W. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol.17, 6693–6699 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev.11, 255–269 (1997). ArticleCASPubMed Google Scholar
Ricci, A. R., Genereaux, J. & Brandl, C. J. Components of the SAGA histone acetyltransferase complex are required for repressed transcription of ARG1 in rich medium. Mol. Cell. Biol.22, 4033–4042 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature418, 104–108 (2002). Established that histone ubiquitylation is required for subsequent histone modifications that are important in gene silencing. ArticleCASPubMed Google Scholar
Briggs, S. D. et al. Gene silencing: _Trans_-histone regulatory pathway in chromatin. Nature418, 498 (2002). ArticleCASPubMed Google Scholar
Rice, J. C. & Allis, C. D. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol.13, 263–273 (2001). ArticleCASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Wu, R. S., Kohn, K. W. & Bonner, W. M. Metabolism of ubiquitinated histones. J. Biol. Chem.256, 5916–5920 (1981). ArticleCASPubMed Google Scholar
Haas, A., Reback, P. M., Pratt, G. & Rechsteiner, M. Ubiquitin-mediated degradation of histone H3 does not require the substrate-binding ubiquitin protein ligase, E3, or attachment of polyubiquitin chains. J. Biol. Chem.265, 21664–21669 (1990). ArticleCASPubMed Google Scholar
Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science296, 548–550 (2002). Showed that components of the 19S proteasome are recruited to a transcriptionally-active gene in yeast. ArticleCASPubMed Google Scholar
Hook, S. S., Orian, A., Cowley, S. M. & Eisenman, R. N. Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl Acad. Sci. USA99, 13425–13430 (2002). ArticleCASPubMedPubMed Central Google Scholar
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature419, 407–411 (2002). ArticleCASPubMed Google Scholar
Chen, J. L., Attardi, L. D., Verrijzer, C. P., Yokomori, K. & Tjian, R. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell79, 93–105 (1994). ArticleCASPubMed Google Scholar
Moazed, D. & Johnson, D. A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell86, 667–677 (1996). ArticleCASPubMed Google Scholar
Sanders, S. L., Garbett, K. A. & Weil, P. A. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol. Cell. Biol.22, 6000–6013 (2002). ArticleCASPubMedPubMed Central Google Scholar
Svejstrup, J. Q. Mechanisms of transcription-coupled DNA repair. Nature Rev. Mol. Cell. Biol.3, 21–29 (2002). ArticleCAS Google Scholar
Lee, K. B., Wang, D., Lippard, S. J. & Sharp, P. A. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl Acad. Sci. USA99, 4239–4244 (2002). Provided biochemical evidence that DNA-damage-dependent ubiquitylation of RNA polymerase II is coupled to transcription. ArticleCASPubMedPubMed Central Google Scholar
Beaudenon, S. L., Huacani, M. R., Wang, G., McDonnell, D. P. & Huibregtse, J. M. Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol.19, 6972–6979 (1999). ArticleCASPubMedPubMed Central Google Scholar
Huibregtse, J. M., Yang, J. C. & Beaudenon, S. L. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA94, 3656–3661 (1997). ArticleCASPubMedPubMed Central Google Scholar
Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev.14, 2452–2460 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mitsui, A. & Sharp, P. A. Ubiquitination of RNA polymerase II large subunit signaled by phosphorylation of carboxyl-terminal domain. Proc. Natl Acad. Sci. USA96, 6054–6059 (1999). ArticleCASPubMedPubMed Central Google Scholar
Imhof, M. O. & McDonnell, D. P. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol.16, 2594–2605 (1996). ArticleCASPubMedPubMed Central Google Scholar
Woudstra, E. C. et al. A Rad26-Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature415, 929–933 (2002). ArticleCASPubMed Google Scholar
Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100, 391–398 (2000). ArticleCASPubMed Google Scholar
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell78, 773–785 (1994). ArticleCASPubMed Google Scholar
Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell102, 577–586 (2000). ArticleCASPubMed Google Scholar
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell107, 667–677 (2001). ArticleCASPubMed Google Scholar
Borden, K. L. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell. Biol.22, 5259–5269 (2002). ArticleCASPubMedPubMed Central Google Scholar
Muller, S., Matunis, M. J. & Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J.17, 61–70 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev.15, 3088–3103 (2001). Established a solid connection between SUMO-modification of a transcription factor, transcriptional regulation and PML-body formation. ArticleCASPubMedPubMed Central Google Scholar
Ross, S., Best, J. L., Zon, L. I. & Gill, G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell10, 831–842 (2002). ArticleCASPubMed Google Scholar
Bies, J., Markus, J. & Wolff, L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem.277, 8999–9009 (2002). ArticleCASPubMed Google Scholar
Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem.277, 41311–41317 (2002). ArticleCASPubMed Google Scholar
Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA99, 2872–2877 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kim, J., Cantwell, C. A., Johnson, P. F., Pfarr, C. M. & Williams, S. C. Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J. Biol. Chem.277, 38037–38044 (2002). ArticleCASPubMed Google Scholar
Ostendorff, H. P. et al. Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors. Nature416, 99–103 (2002). ArticleCASPubMed Google Scholar
Kaiser, P., Flick, K., Wittenberg, C. & Reed, S. I. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell102, 303–314 (2000). ArticleCASPubMed Google Scholar
Rouillon, A., Barbey, R., Patton, E. E., Tyers, M. & Thomas, D. Feedback-regulated degradation of the transcriptional activator Met4 is triggered by the SCFMet30 complex. EMBO J.19, 282–294 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kuras, L. et al. Dual regulation of the met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Mol. Cell10, 69–80 (2002). Showed that the yeast transcription factor Met4 can be either inactivated or destroyed by Met30-dependent ubiquitylation, depending on nutrients. ArticleCASPubMed Google Scholar
Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J.16, 3797–3804 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev.10, 1443–1454 (1996). ArticleCASPubMed Google Scholar
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature387, 296–299 (1997). ArticleCASPubMed Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). ArticleCASPubMed Google Scholar
Ma, Q. & Baldwin, K. T. 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced degradation of aryl hydrocarbon receptor (AhR) by the ubiquitin-proteasome pathway. Role of the transcription activation and DNA binding of AhR. J. Biol. Chem.275, 8432–8438 (2000). ArticleCASPubMed Google Scholar
Lo, R. S. & Massague, J. Ubiquitin-dependent degradation of TGF-β-activated Smad2. Nature Cell Biol.1, 472–478 (1999). ArticleCASPubMed Google Scholar
Kim, T. K. & Maniatis, T. Regulation of interferon-γ-activated STAT1 by the ubiquitin-proteasome pathway. Science273, 1717–1719 (1996). ArticleCASPubMed Google Scholar
Bertani, D., Oppenheim, A. B. & Narberhaus, F. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease. FEBS Lett.493, 17–20 (2001). ArticleCASPubMed Google Scholar
Becker, G., Klauck, E. & Hengge-Aronis, R. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl Acad. Sci. USA96, 6439–6444 (1999). ArticleCASPubMedPubMed Central Google Scholar
Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J.18, 717–726 (1999). ArticleCASPubMedPubMed Central Google Scholar
Salghetti, S. E., Muratani, M., Wijnen, H., Futcher, B. & Tansey, W. P. Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc. Natl Acad. Sci. USA97, 3118–3123 (2000). ArticleCASPubMedPubMed Central Google Scholar
Molinari, E., Gilman, M. & Natesan, S. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J.18, 6439–6447 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brower, C. S. et al. Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc. Natl Acad. Sci. USA99, 10353–10358 (2002). Established that Ub-ligase activity is directly associated with the RNA polymerase II holoenzyme. ArticleCASPubMedPubMed Central Google Scholar
Chi, Y. et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev.15, 1078–1092 (2001). Showed that the yeast transcription factor GCN4 is marked for destruction by a kinase that is present in the RNA polymerase II holoenzyme. ArticleCASPubMedPubMed Central Google Scholar
Liao, S. M. et al. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature374, 193–196 (1995). ArticleCASPubMed Google Scholar
Salghetti, S. E., Caudy, A. A., Chenoweth, J. G. & Tansey, W. P. Regulation of transcriptional activation domain function by ubiquitin. Science293, 1651–1653 (2001). Showed that ubiquitylation of a transcription factor bearing the prototypical VP16 activation domain can be required for transcriptional activation. ArticleCASPubMed Google Scholar
Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl Acad. Sci. USA98, 3056–3061 (2001). ArticleCASPubMedPubMed Central Google Scholar
Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem.68, 1015–1068 (1999). ArticleCASPubMed Google Scholar
Swaffield, J. C., Bromberg, J. F. & Johnston, S. A. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature357, 698–700 (1992). ArticleCASPubMed Google Scholar
Russell, S. J., Sathyanarayana, U. G. & Johnston, S. A. Isolation and characterization of SUG2. A novel ATPase family component of the yeast 26 S proteasome. J. Biol. Chem.271, 32810–32817 (1996). ArticleCASPubMed Google Scholar
Swaffield, J. C., Melcher, K. & Johnston, S. A. A highly conserved ATPase protein as a mediator between acidic activation domains and the TATA-binding protein. Nature374, 88–91 (1995). ArticleCASPubMed Google Scholar
Masuyama, H. & MacDonald, P. N. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J. Cell. Biochem.71, 429–440 (1998). ArticleCASPubMed Google Scholar
vom Baur, E. et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J.15, 110–124 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wang, W., Chevray, P. M. & Nathans, D. Mammalian Sug1 and c-Fos in the nuclear 26S proteasome. Proc. Natl Acad. Sci. USA93, 8236–8240 (1996). ArticleCASPubMedPubMed Central Google Scholar
Makino, Y. et al. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes Cells4, 529–539 (1999). ArticleCASPubMed Google Scholar
Weeda, G. et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res.25, 2274–2283 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell77, 599–608 (1994). ArticleCASPubMed Google Scholar
Russell, S. J. & Johnston, S. A. Evidence that proteolysis of Gal4 cannot explain the transcriptional effects of proteasome ATPase mutations. J. Biol. Chem.276, 9825–9831 (2001). ArticleCASPubMed Google Scholar
Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T. & Johnston, S. A. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol. Cell7, 981–991 (2001). ArticleCASPubMed Google Scholar
Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell11, 3425–3439 (2000). ArticleCASPubMedPubMed Central Google Scholar
Myers, L. C. et al. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev.12, 45–54 (1998). ArticleCASPubMedPubMed Central Google Scholar
Makino, Y. et al. SUG1, a component of the 26 S proteasome, is an ATPase stimulated by specific RNAs. J. Biol. Chem.272, 23201–23205 (1997). ArticleCASPubMed Google Scholar
Albert, T. K. et al. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J.21, 355–364 (2002). ArticleCASPubMedPubMed Central Google Scholar
Aso, T., Lane, W. S., Conaway, J. W. & Conaway, R. C. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science269, 1439–1443 (1995). ArticleCASPubMed Google Scholar
Mueller, C. L. & Jaehning, J. A. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol. Cell. Biol.22, 1971–1980 (2002). ArticleCASPubMedPubMed Central Google Scholar
Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA92, 2563–2567 (1995). ArticleCASPubMedPubMed Central Google Scholar
Saleh, A. et al. TOM1p, a yeast hect–domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J. Mol. Biol.282, 933–946 (1998). ArticleCASPubMed Google Scholar