Beyond the gap: functions of unpaired connexon channels (original) (raw)
Fraser, S. E., Green, C. R., Bode, H. R. & Gilula, N. B. Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science237, 49–55 (1987). CASPubMed Google Scholar
Deans, M. R., Volgyi, B., Goodenough, D. A., Bloomfield, S. A. & Paul, D. L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron36, 703–712 (2002). CASPubMedPubMed Central Google Scholar
Valiunas, V., Bukauskas, F. F. & Weingart, R. Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells. Circ. Res.80, 708–719 (1997). CASPubMed Google Scholar
Lampe, P. D. & Lau, A. F. Regulation of gap junctions by phosphorylation of connexins. Arch. Biochem. Biophys.384, 205–215 (2000). CASPubMed Google Scholar
Harris, A. L. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys.34, 325–472 (2001). CASPubMed Google Scholar
Veenstra, R. D. et al. Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ. Res.77, 1156–1165 (1995). CASPubMed Google Scholar
Elfgang, C. et al. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell Biol.129, 805–817 (1995). CASPubMed Google Scholar
Cao, F. L. et al. A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J. Cell Sci.111, 31–43 (1998). CASPubMed Google Scholar
Bevans, C. G., Kordel, M., Rhee, S. K. & Harris, A. L. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem.273, 2808–2816 (1998). CASPubMed Google Scholar
He, D. S., Jiang, J. X., Taffet, S. M. & Burt, J. M. Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc. Natl Acad. Sci. USA96, 6495–6500 (1999). CASPubMedPubMed Central Google Scholar
White, T. W., Bruzzone, R., Wolfram, S., Paul, D. L. & Goodenough, D. A. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J. Cell Biol.125, 879–892 (1994). CASPubMed Google Scholar
Cottrell, G. T. & Burt, J. M. Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons. Am. J. Physiol. Cell Physiol.281, C1559–C1567 (2001). CASPubMed Google Scholar
Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. & Goodenough, D. A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J. Cell Biol.115, 1077–1089 (1991). CASPubMed Google Scholar
Musil, L. S. & Goodenough, D. A. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J. Cell Biol.115, 1357–1374 (1991). This paper presents biochemical evidence of connexons on the cell surface before incorporation into gap-junctional intercellular channels. CASPubMed Google Scholar
Musil, L. S. & Goodenough, D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell74, 1065–1077 (1993). CASPubMed Google Scholar
DeVries, S. H. & Schwartz, E. A. Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J. Physiol. (Lond.)445, 201–230 (1992). This is a classic and beautiful functional demonstration of open connexons in the plasma membrane of a single cell. CAS Google Scholar
Bennett, M. V. L. & Goodenough, D. A. Gap junctions, electrotonic coupling, and intercellular communication. Neurosci. Res. Program Bull.16, 373–486 (1978). Google Scholar
Nelles, E. et al. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc. Natl Acad. Sci. USA93, 9565–9570 (1996). CASPubMedPubMed Central Google Scholar
Simon, A. M., Goodenough, D. A., Li, E. & Paul, D. L. Female infertility in mice lacking connexin 37. Nature385, 525–529 (1997). CASPubMed Google Scholar
Gong, X. et al. Disruption of α3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell91, 833–843 (1997). CASPubMed Google Scholar
White, T. W., Goodenough, D. A. & Paul, D. L. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J. Cell Biol.143, 815–825 (1998). CASPubMedPubMed Central Google Scholar
Bergoffen, J. et al. Connexin mutations in X-linked Charcot–Marie–Tooth disease. Science262, 2039–2042 (1993). CASPubMed Google Scholar
Richard, G. Connexins: a connection with the skin. Exp. Dermatol.9, 77–96 (2000). CASPubMed Google Scholar
Berry, V. et al. Connexin 50 mutation in a family with congenital 'zonular nuclear' pulverulent cataract of Pakistani origin. Hum. Genet.105, 168–170 (1999). CASPubMed Google Scholar
Mackay, D. et al. Connexin46 mutations in autosomal dominant congenital cataract. Am. J. Hum. Genet.64, 1357–1364 (1999). CASPubMedPubMed Central Google Scholar
Polyakov, A., Shagina, I., Khlebnikova, O. & Evgrafov, O. Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin. Genet.60, 476–478 (2001). CASPubMed Google Scholar
Shiels, A. et al. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant zonular pulverulent cataract, on chromosome 1q. Am. J. Hum. Genet.62, 526–532 (1998). CASPubMedPubMed Central Google Scholar
Kelsell, D. P. et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature387, 80–83 (1997). CASPubMed Google Scholar
Willecke, K. et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem.383, 725–737 (2002). CASPubMed Google Scholar
Rabionet, R., Lopez-Bigas, N., Arbones, M. L. & Estivill, X. Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol. Med.8, 205–212 (2002). CASPubMed Google Scholar
Richard, G. Connexin disorders of the skin. Adv. Dermatol.17, 243–277 (2001). CASPubMed Google Scholar
White, T. W. & Paul, D. L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol.61, 283–310 (1999). CASPubMed Google Scholar
Meyer, R. A., Laird, D. W., Revel, J. P. & Johnson, R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J. Cell Biol.119, 179–189 (1992). CASPubMed Google Scholar
Goodenough, D. A. & Revel, J. P. The permeability of isolated and in situ mouse hepatic gap junctions studied with enzymatic tracers. J. Cell Biol.50, 81–91 (1971). CASPubMedPubMed Central Google Scholar
Buehler, L. K., Stauffer, K. A., Gilula, N. B. & Kumar, N. M. Single channel behavior of recombinant β2 gap junction connexons reconstituted into planar lipid bilayers. Biophys. J.68, 1767–1775 (1995). CASPubMedPubMed Central Google Scholar
Ebihara, L. & Steiner, E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J. Gen. Physiol.102, 59–74 (1993). CASPubMed Google Scholar
DeVries, S. H. & Schwartz, E. A. Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J. Physiol414, 351–375 (1989). CASPubMedPubMed Central Google Scholar
Li, H. Y. et al. Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J. Cell Biol.134, 1019–1030 (1996). CASPubMed Google Scholar
Hofer, A. & Dermietzel, R. Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia24, 141–154 (1998). CASPubMed Google Scholar
Kondo, R. P., Wang, S. Y., John, S. A., Weiss, J. N. & Goldhaber, J. I. Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J. Mol. Cell Cardiol.32, 1859–1872 (2000). CASPubMed Google Scholar
Beahm, D. L. & Hall, J. E. Hemichannel and junctional properties of connexin 50. Biophys. J.82, 2016–2031 (2002). CASPubMedPubMed Central Google Scholar
Valiunas, V. Biophysical properties of Connexin-45 gap junction hemichannels studied in vertebrate cells. J. Gen. Physiol.119, 147–164 (2002). CASPubMedPubMed Central Google Scholar
White, T. W. et al. Functional characteristics of skate connexin35, a member of the γ subfamily of connexins expressed in the vertebrate retina. Eur. J. Neurosci.11, 1883–1890 (1999). CASPubMed Google Scholar
Arellano, R. O., Woodward, R. M. & Miledi, R. A monovalent cationic conductance that is blocked by extracellular divalent cations in Xenopus oocytes. J. Physiol. (Lond.)484, 593–604 (1995). CAS Google Scholar
Ebihara, L. Xenopus connexin38 forms hemi-gap junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys. J.71, 742–748 (1996). CASPubMedPubMed Central Google Scholar
Quist, A. P., Rhee, S. K., Lin, H. & Lal, R. Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J. Cell Biol.148, 1063–1074 (2000). CASPubMedPubMed Central Google Scholar
Turin, L. & Warner, A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryos. Nature270, 56–57 (1977). CASPubMed Google Scholar
Trexler, E. B., Bukauskas, F. F., Bennett, M. V., Bargiello, T. A. & Verselis, V. K. Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J. Gen. Physiol.113, 721–742 (1999). CASPubMed Google Scholar
Ebihara, L., Berthoud, V. M. & Beyer, E. C. Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys. J.68, 1796–1803 (1995). CASPubMedPubMed Central Google Scholar
Verselis, V. K., Trexler, E. B. & Bukauskas, F. F. Connexin hemichannels and cell–cell channels: comparison of properties. Braz. J. Med. Biol. Res.33, 379–389 (2000). CASPubMed Google Scholar
Eskandari, S., Zampighi, G. A., Leung, D. W., Wright, E. M. & Loo, D. D. Inhibition of gap junction hemichannels by chloride channel blockers. J. Membr. Biol.185, 93–102 (2002). CASPubMed Google Scholar
Zhang, Y., McBride, D. W. & Hamill, O. P. The ion selectivity of a membrane conductance inactivated by extracellular calcium in Xenopus oocytes. J. Physiol. (Lond.)508, 763–776 (1998). CAS Google Scholar
Jordan, K., Chodock, R., Hand, A. R. & Laird, D. W. The origin of annular junctions: a mechanism of gap junction internalization. J. Cell Sci.114, 763–773 (2001). CASPubMed Google Scholar
Jordan, K. et al. Trafficking, assembly, and function of a connexin43–green fluorescent protein chimera in live mammalian cells. Mol. Biol. Cell10, 2033–2050 (1999). CASPubMedPubMed Central Google Scholar
Kumar, N. M., Friend, D. S. & Gilula, N. B. Synthesis and assembly of human β1 gap junctions in BHK cells by DNA transfection with the human β1 cDNA. J. Cell Sci.108, 3725–3734 (1995). CASPubMed Google Scholar
Falk, M. M. Connexin-specific distribution within gap junctions revealed in living cells. J. Cell Sci.113, 4109–4120 (2000). CASPubMed Google Scholar
Lauf, U. et al. Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc. Natl Acad. Sci. USA99, 10446–10451 (2002). CASPubMedPubMed Central Google Scholar
Contreras, J. E. et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl Acad. Sci. USA99, 495–500 (2002). CASPubMed Google Scholar
John, S. A., Kondo, R., Wang, S. Y., Goldhaber, J. I. & Weiss, J. N. Connexin-43 hemichannels opened by metabolic inhibition. J. Biol. Chem.274, 236–240 (1999). CASPubMed Google Scholar
Li, F., Sugishita, K., Su, Z., Ueda, I. & Barry, W. H. Activation of connexin-43 hemichannels can elevate [Ca2+]i and [Na+]i in rabbit ventricular myocytes during metabolic inhibition. J. Mol. Cell. Cardiol.33, 2145–2155 (2001). CASPubMed Google Scholar
Cotrina, M. L. et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl Acad. Sci. USA95, 15735–15740 (1998). CASPubMedPubMed Central Google Scholar
Charles, A. C. et al. Intercellular calcium signaling via gap junctions in glioma cells. J. Cell Biol.118, 195–201 (1992). CASPubMed Google Scholar
Finkbeiner, S. Calcium waves in astrocytes — filling in the gaps. Neuron8, 1101–1108 (1992). CASPubMed Google Scholar
Venance, L., Stella, N., Glowinski, J. & Giaume, C. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. Neurosci.17, 1981–1992 (1997). CASPubMedPubMed Central Google Scholar
D'Andrea, P. et al. Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. Biorheology37, 75–83 (2000). CASPubMed Google Scholar
Frame, M. K. & de Feijter, A. W. Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp. Cell Res.230, 197–207 (1997). CASPubMed Google Scholar
Sanderson, M. J., Charles, A. C. & Dirksen, E. R. Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul.1, 585–596 (1990). CASPubMedPubMed Central Google Scholar
Cotrina, M. L., Lin, J. H., Lopez-Garcia, J. C., Naus, C. C. & Nedergaard, M. ATP-mediated glia signaling. J. Neurosci.20, 2835–2844 (2000). CASPubMedPubMed Central Google Scholar
Jorgensen, N. R. et al. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J. Biol. Chem.277, 7574–7580 (2002). CASPubMed Google Scholar
Jorgensen, N. R. et al. Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J. Bone Miner. Res.15, 1024–1032 (2000). CASPubMed Google Scholar
Fry, T., Evans, J. H. & Sanderson, M. J. Propagation of intercellular calcium waves in C6 glioma cells transfected with connexins 43 or 32. Microsc. Res. Tech.52, 289–300 (2001). This state-of-the-art study shows that Cx43- and Cx32-based gap junctions are permeable to InsP3and that Ca2+wave propagation through gap junctions is dependent on the diffusion of InsP3 but not Ca2+. CASPubMed Google Scholar
Suadicani, S. O., Vink, M. J. & Spray, D. C. Slow intercellular Ca2+ signaling in wild-type and Cx43-null neonatal mouse cardiac myocytes. Am. J. Physiol Heart Circ. Physiol.279, H3076–H3088 (2000). CASPubMed Google Scholar
Scemes, E., Suadicani, S. O. & Spray, D. C. Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci.20, 1435–1445 (2000). CASPubMedPubMed Central Google Scholar
Klepeis, V. E., Cornell-Bell, A. & Trinkaus-Randall, V. Growth factors but not gap junctions play a role in injury-induced Ca2+ waves in epithelial cells. J. Cell Sci.114, 4185–4195 (2001). CASPubMed Google Scholar
Braet, K., Vandamme, W., Martin, P. E., Evans, W. H. & Leybaert, L. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium33, 37–48 (2003). Here, synthetic peptides that correspond to the extracellular sequences of connexins were used in studies designed to interfere with the function of connexons. CASPubMed Google Scholar
Blomstrand, F., Aberg, N. D., Eriksson, P. S., Hansson, E. & Ronnback, L. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience92, 255–265 (1999). CASPubMed Google Scholar
Stout, C. E., Costantin, J. L., Naus, C. C. & Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. (2002). This paper shows that both propagation of Ca2+waves and the release of ATP from astrocytes are repressed by the gap-junction blocker FFA.
Guan, X. et al. The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J. Cell Biol.139, 1785–1792 (1997). CASPubMedPubMed Central Google Scholar
Lee, H. C., Galione, A. & Walseth, T. F. Cyclic ADP-ribose: metabolism and calcium mobilizing function. Vitam. Horm.48, 199–257 (1994). CASPubMed Google Scholar
Zocchi, E. et al. Ligand-induced internalization of CD38 results in intracellular Ca2+ mobilization: role of NAD+ transport across cell membranes. FASEB J.13, 273–283 (1999). CASPubMed Google Scholar
Bruzzone, S., Guida, L., Zocchi, E., Franco, L. & De Flora, A. Connexin 43 hemichannels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J.15, 10–12 (2001). These experiments revealed a temperature-independent NAD+ transport system in the plasma membrane of 3T3 fibroblast cells, which could be blocked by 18 α-glycyrrhetinic acid or by treatment with antisense-Cx43 oligonucleotides. CASPubMed Google Scholar
Franco, L. et al. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem.276, 48300–48308 (2001). PubMed Google Scholar
Verderio, C. et al. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J. Neurochem.78, 646–657 (2001). CASPubMed Google Scholar
Bruzzone, S. et al. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J. Biol. Chem.276, 48300–48308 (2001). CASPubMed Google Scholar
Zocchi, E. et al. Expression of CD38 increases intracellular calcium concentration and reduces doubling time in HeLa and 3T3 cells. J. Biol. Chem.273, 8017–8024 (1998). CASPubMed Google Scholar
Schiller, P. C., Mehta, P. P., Roos, B. A. & Howard, G. A. Hormonal regulation of intercellular communication: parathyroid hormone increases connexin 43 gene expression and gap-junctional communication in osteoblastic cells. Mol. Endocrinol.6, 1433–1440 (1992). CASPubMed Google Scholar
Steinberg, T. H. et al. Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J.13, 744–750 (1994). CASPubMedPubMed Central Google Scholar
Ilvesaro, J., Vaananen, K. & Tuukkanen, J. Bone-resorbing osteoclasts contain gap-junctional connexin-43. J. Bone Miner. Res.15, 919–926 (2000). CASPubMed Google Scholar
Reaume, A. G. et al. Cardiac malformation in neonatal mice lacking connexin43. Science267, 1831–1834 (1995). CASPubMed Google Scholar
Lecanda, F. et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J. Cell Biol.151, 931–944 (2000). CASPubMedPubMed Central Google Scholar
Orcel, P. & Beaudreuil, J. Bisphosphonates in bone diseases other than osteoporosis. Joint Bone Spine69, 19–27 (2002). PubMed Google Scholar
Weinstein, R. S. & Manolagas, S. C. Apoptosis and osteoporosis. Am. J. Med.108, 153–164 (2000). CASPubMed Google Scholar
Halasy-Nagy, J. M., Rodan, G. A. & Reszka, A. A. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone29, 553–559 (2001). CASPubMed Google Scholar
Plotkin, L. I. et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J. Clin. Invest.104, 1363–1374 (1999). CASPubMedPubMed Central Google Scholar
Plotkin, L. I., Manolagas, S. C. & Bellido, T. Transduction of cell survival signals by connexin 43 hemichannels. J. Biol. Chem.277, 8648–8657 (2002). Inhibition of apoptosis is seen in bone cells that express Cx43, but not in those derived from thecx43-knockout mouse, which indicates a requirement for connexin expression. In addition, the ability to inhibit apoptosis can be restored tocx43−/−cells by transfection with Cx43. CASPubMed Google Scholar
Plotkin, L. I. & Bellido, T. Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43. Cell Adhes. Commun.8, 377–382 (2001). CAS Google Scholar
Giepmans, B. N., Hengeveld, T., Postma, F. R. & Moolenaar, W. H. Interaction of c-Src with gap junction protein connexin-43: role in the regulation of cell–cell communication. J. Biol. Chem.276, 8544–8549 (2000). The carboxy-terminal cytoplasmic domain of Cx43 interacts directly with, and is phosphorylated by, Src, and this results in inhibition of gap junctional intercellular channels, and by implication, connexons. PubMed Google Scholar
Boucher, M. J. et al. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell Biochem.79, 355–369 (2000). CASPubMed Google Scholar
Yuan, P. X. et al. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem.276, 31674–31683 (2001). CASPubMed Google Scholar
Huang, R. P. et al. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int. J. Cancer92, 130–138 (2001). CASPubMed Google Scholar
Kuffler, S. W. Discharge patterns and functional organization of the mammalian retina. J. Neurophysiol.16, 37–68 (1953). CASPubMed Google Scholar
Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol178, 477–504 (1965). CASPubMedPubMed Central Google Scholar
Werblin, F. S. & Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol.32, 339–355 (1969). CASPubMed Google Scholar
Baylor, D. A., Fuortes, M. G. & O'Bryan, P. M. Lateral interaction between vertebrate photoreceptors. Vision Res.11, 1195–1196 (1971). CASPubMed Google Scholar
Miller, R. F. & Dacheux, R. F. Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells. J. Gen. Physiol67, 639–659 (1976). CASPubMed Google Scholar
Schwartz, E. A. Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron. Science238, 350–355 (1987). CASPubMed Google Scholar
Byzov, A. L. & Shura-Bura, T. M. Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina. Vision Res.26, 33–44 (1986). CASPubMed Google Scholar
Kamermans, M. et al. Hemichannel-mediated inhibition in the outer retina. Science292, 1178–1180 (2001). An imaginative study that provides data supporting a model in which active connexons are the basis for communication of centre-surround antagonism between horizontal cells and cone photoreceptors in the vertebrate retina. CASPubMed Google Scholar
Janssen-Bienhold, U. et al. Identification and localization of connexin26 within the photoreceptor–horizontal cell synaptic complex. Vis. Neurosci.18, 169–178 (2001). CASPubMed Google Scholar
Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science296, 503–507 (2002). CASPubMed Google Scholar
Naus, C. C. G., Bond, S. L., Bechberger, J. & Rushlow, W. Identification of genes differentially expressed in C6 glioma cells transfected with connexin43. Brain Res. Brain Res. Rev.32, 259–266 (2000). CASPubMed Google Scholar
Dahl, G., Nonner, W. & Werner, R. Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys. J.67, 1816–1822 (1994). CASPubMedPubMed Central Google Scholar
Kwak, B. R. & Jongsma, H. J. Selective inhibition of gap junction channel activity by synthetic peptides. J. Physiol. (Lond.)516, 679–685 (1999). CAS Google Scholar
Boitano, S. & Evans, W. H. Connexin mimetic peptides reversibly inhibit Ca2+ signaling through gap junctions in airway cells. Am. J. Physiol. Lung Cell. Mol. Physiol.279, L623–L630 (2000). CASPubMed Google Scholar
Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science286, 971–974 (1999). CASPubMed Google Scholar
Beyer, E. C., Paul, D. L. & Goodenough, D. A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol.105, 2621–2629 (1987). CASPubMed Google Scholar
Kumar, N. M. & Gilula, N. B. Molecular biology and genetics of gap junction channels. Semin. Cell Biol.3, 3–16 (1992). CASPubMed Google Scholar
Revel, J. -P. & Karnovsky, M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J. Cell Biol.33, C7–C12 (1967). CASPubMedPubMed Central Google Scholar
Unger, V. M., Kumar, N. M., Gilula, N. B. & Yeager, M. Three-dimensional structure of a recombinant gap junction membrane channel. Science283, 1176–1180 (1999). CASPubMed Google Scholar
Cho, W. K., Stern, S. & Biggers, J. D. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J. Exp. Zool.187, 383–386 (1974). CASPubMed Google Scholar
Lawrence, T. S., Beers, W. H. & Gilula, N. B. Transmission of hormonal stimulation by cell-to-cell communication. Nature272, 501–506 (1978). CASPubMed Google Scholar
Goldberg, G. S. et al. Direct isolation and analysis of endogenous transjunctional ADP from Cx43 transfected C6 glioma cells. Exp. Cell Res.239, 82–92 (1998). CASPubMed Google Scholar
Kleopa, K. A., Yum, S. W. & Scherer, S. S. Cellular mechanisms of connexin32 mutations associated with CNS manifestations. J. Neurosci. Res.68, 522–534 (2002). CASPubMed Google Scholar
Balice-Gordon, R. J., Bone, L. J. & Scherer, S. S. Functional gap junctions in the Schwann cell myelin sheath. J. Cell Biol.142, 1095–1104 (1998). CASPubMedPubMed Central Google Scholar
Vardi, N., Morigiwa, K., Wang, T. L., Shi, Y. J. & Sterling, P. Neurochemistry of the mammalian cone 'synaptic complex'. Vision Res.38, 1359–1369 (1998). CASPubMed Google Scholar