Ras GTPases: integrins' friends or foes? (original) (raw)
The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282, 2012–2018 (1998).
Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science287, 2185–2195 (2000). PubMed Google Scholar
Cheresh, D. A. & Mecham, R. P. Integrins: molecular and biological responses to the extracellular matrix. (Academic Press, London, 1994). Google Scholar
Haas, T. A. & Plow, E. F. Integrin-ligand interactions: a year in review. Curr. Opin. Cell. Biol.6, 656–662 (1994). CASPubMed Google Scholar
Loftus, J. C., Smith, J. W. & Ginsberg, M. H. Integrin-mediated cell adhesion: the extracellular face. J. Biol. Chem.269, 25235–25238 (1994). CASPubMed Google Scholar
Ginsberg, M. H., Loftus, J. C. & Plow, E. F. Common and ligand-specific integrin recognition mechanisms. Chem. Immunol.50, 75–88 (1991). CASPubMed Google Scholar
Liu, S., Calderwood, D. A. & Ginsberg, M. H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci.113, 3563–3571 (2000). CASPubMed Google Scholar
Hughes, P. E. et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J. Biol. Chem.271, 6571–6574 (1996). CASPubMed Google Scholar
Takagi, J., Erickson, H. P. & Springer, T. A. C-terminal opening mimics 'inside-out' activation of integrin α5β1 . Nature Struct. Biol.8, 412–416 (2001). CASPubMed Google Scholar
Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct.31, 485–516 (2002). CASPubMed Google Scholar
Reuther, G. W. & Der, C. J. The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr. Opin. Cell Biol.12, 157–165 (2000). CASPubMed Google Scholar
Lee, C. H., Della, N. G., Chew, C. E. & Zack, D. J. Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J. Neurosci.16, 6784–6794 (1996). CASPubMedPubMed Central Google Scholar
Shao, H., Kadono-Okuda, K., Finlin, B. S. & Andres, D. A. Biochemical characterization of the Ras-related GTPases Rit and Rin. Arch. Biochem. Biophys.371, 207–219 (1999). CASPubMed Google Scholar
Shields, J. M., Pruitt, K., McFall, A., Shaub, A. & Der, C. J. Understanding Ras: 'it ain't over 'til it's over'. Trends Cell. Biol.10, 147–154 (2000). CASPubMed Google Scholar
Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. A ras-related gene with transformation suppressor activity. Cell56, 77–84 (1989). CASPubMed Google Scholar
Hughes, P. E. et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell88, 521–530 (1997). CASPubMed Google Scholar
Hughes, P. E. et al. Suppression of integrin activation by activated Ras or Raf does not correlate with bulk activation of ERK MAP kinase. Mol. Biol. Cell13, 2256–2265 (2002). CASPubMedPubMed Central Google Scholar
Kashiwagi, H. et al. Affinity modulation of platelet integrin αIIbβ3 by β3-endonexin, a selective binding partner of the β3 integrin cytoplasmic tail. J. Cell Biol.137, 1433–1443 (1997). CASPubMedPubMed Central Google Scholar
Sechler, J. L., Cumiskey, A. M., Gazzola, D. M. & Schwarzbauer, J. E. A novel RGD-independent fibronectin assembly pathway initiated by α4β1 integrin binding to the alternatively spliced V region. J. Cell Sci.113, 1491–1498 (2000). CASPubMed Google Scholar
Liu, Z. J. et al. A novel role for H-Ras in the regulation of very late antigen-4 integrin and VCAM-1 via c-Myc-dependent and -independent mechanisms. J. Immunol.163, 4901–4908 (1999). CASPubMed Google Scholar
Shibayama, H. et al. H-Ras is involved in the inside-out signaling pathway of interleukin-3-induced integrin activation. Blood93, 1540–1548 (1999). CASPubMed Google Scholar
Fujimoto, H. et al. Down-regulation of α6 integrin, an anti-oncogene product, by functional cooperation of H-Ras and c-Myc. Genes Cells6, 337–343 (2001). CASPubMed Google Scholar
Myou, S. et al. Blockade of focal clustering and active conformation in β2-integrin-mediated adhesion of eosinophils to intercellular adhesion molecule-1 caused by transduction of HIV TAT-dominant negative Ras. J. Immunol.169, 2670–2676 (2002). CASPubMed Google Scholar
Tanaka, Y. et al. H-Ras signals to cytoskeletal machinery in induction of integrin-mediated adhesion of T cells. J. Immunol.163, 6209–6216 (1999). CASPubMed Google Scholar
Sethi, T., Ginsberg, M. H., Downward, J. & Hughes, P. E. The small GTP-binding protein R-Ras can influence integrin activation by antagonizing a Ras/Raf-initiated integrin suppression pathway. Mol. Biol. Cell10, 1799–1809 (1999). CASPubMedPubMed Central Google Scholar
Kinashi, T. et al. Distinct mechanisms of α5β1 integrin activation by Ha-Ras and R-Ras. J. Biol. Chem.275, 22590–22596 (2000). CASPubMed Google Scholar
Ramos, J. W., Kojima, T. K., Hughes, P. E., Fenczik, C. A. & Ginsberg, M. H. The death effector domain of PEA-15 is involved in its regulation of integrin activation. J. Biol. Chem.273, 33897–33900 (1998). CASPubMed Google Scholar
Matter, M. L., Ginsberg, M. H. & Ramos, J. W. Identification of cell signaling molecules by expression cloning. Sci. STKE103, PL9 (2001). Google Scholar
Kitsberg, D. et al. Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFα-induced apoptosis. J. Neurosci.19, 8244–8251 (1999). CASPubMedPubMed Central Google Scholar
Formstecher, E. et al. PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev. Cell.1, 239–250 (2001). CASPubMed Google Scholar
Zhang, Z., Vuori, K., Wang, H., Reed, J. C. & Ruoslahti, E. Integrin activation by R-ras. Cell85, 61–69 (1996). Demonstrated for the first time the involvement of R-ras in intergin regulation by converting suspension cells into adherent cells with R-ras. CASPubMed Google Scholar
Keely, P. J., Rusyn, E. V., Cox, A. D. & Parise, L. V. R-Ras signals through specific integrin α cytoplasmic domains to promote migration and invasion of breast epithelial cells. J. Cell. Biol.145, 1077–1088 (1999). CASPubMedPubMed Central Google Scholar
Self, A. J., Caron, E., Paterson, H. F. & Hall, A. Analysis of R-Ras signalling pathways. J. Cell. Sci.114, 1357–1366 (2001). CASPubMed Google Scholar
Ivins, J. K., Yurchenco, P. D. & Lander, A. D. Regulation of neurite outgrowth by integrin activation. J. Neurosci.20, 6551–6560 (2000). CASPubMedPubMed Central Google Scholar
Caron, E., Self, A. J. & Hall, A. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr. Biol.10, 974–978 (2000). CASPubMed Google Scholar
Wang, B., Zou, J. X., Ek-Rylander, B. & Ruoslahti, E. R-Ras contains a proline-rich site that binds to SH3 domains and is required for integrin activation by R-Ras. J. Biol. Chem.275, 5222–5227 (2000). CASPubMed Google Scholar
Hansen, M. et al. R-Ras C-terminal sequences are sufficient to confer R-Ras specificity to H-Ras. Oncogene21, 4448–4461 (2002). CASPubMed Google Scholar
Oertli, B. et al. The effector loop and prenylation site of R-Ras are involved in the regulation of integrin function. Oncogene19, 4961–4969 (2000). CASPubMed Google Scholar
Berrier, A. L., Mastrangelo, A. M., Downward, J., Ginsberg, M. & LaFlamme, S. E. Activated R-ras, Rac1, PI 3-kinase and PKCε can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J. Cell Biol.151, 1549–1560 (2000). CASPubMedPubMed Central Google Scholar
Nimnual, A. S., Yatsula, B. A. & Bar-Sagi, D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science279, 560–563 (1998). CASPubMed Google Scholar
Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science279, 558–560 (1998). CASPubMed Google Scholar
Michiels, F. et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and c-Jun NH2-terminal kinase activation. J. Cell Biol.137, 387–398 (1997). CASPubMedPubMed Central Google Scholar
Storz, P. & Toker, A. 3′-phosphoinositide-dependent kinase-1 (PDK-1) in PI3-kinase signaling. Front. Biosci.7, d886–d902 (2002). CASPubMed Google Scholar
Tsukamoto, N., Hattori, M., Yang, H., Bos, J. L. & Minato, N. Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J. Biol. Chem.274, 18463–18469 (1999). CASPubMed Google Scholar
Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Biol.20, 1956–1969 (2000). Provided the direct evidence for Rap1 involvement in integrin-mediated cell adhesion. CASPubMedPubMed Central Google Scholar
Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell. Biol.161, 417–427 (2003). CASPubMedPubMed Central Google Scholar
Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol. Cell. Biol.22, 1001–1015 (2002). CASPubMedPubMed Central Google Scholar
Enserink, J. M. et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nature Cell. Biol.4, 901–906 (2002). CASPubMed Google Scholar
Arai, A. et al. Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of β1 integrin-mediated hematopoietic cell adhesion. J. Biol. Chem.276, 10453–10462 (2001). CASPubMed Google Scholar
Bos, J. L., de Rooij, J. & Reedquist, K. A. Rap1 signalling: adhering to new models. Nature Rev. Mol. Cell. Biol.2, 369–377 (2001). CAS Google Scholar
Fenczik, C. A. et al. Distinct domains of CD98hc regulate integrins and amino acid transport. J. Biol. Chem.276, 8746–8752 (2001). CASPubMed Google Scholar
Fenczik, C. A., Sethi, T., Ramos, J. W., Hughes, P. E. & Ginsberg, M. H. Complementation of dominant suppression implicates CD98 in integrin activation. Nature390, 81–85 (1997). CASPubMed Google Scholar
Suga, K. et al. CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rap1. FEBS Lett.489, 249–253 (2001). CASPubMed Google Scholar
Reedquist, K. A. et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell Biol.148, 1151–1158 (2000). Provided direct evidence that Rap1 is involved in integrin-mediated adhesion downstream of CD31. CASPubMedPubMed Central Google Scholar
Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D. A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nature Immunol.3, 251–258 (2002). Providedin vivoevidence that Rap1 stimulates the immune response as opposed to causing anergy and suggested that Rap1 acts through stimulating LFA-1-mediated adhesion. CAS Google Scholar
Amsen, D., Kruisbeek, A., Bos, J. L. & Reedquist, K. Activation of the Ras-related GTPase Rap1 by thymocyte TCR engagement and during selection. Eur. J. Immunol.30, 2832–2841 (2000). CASPubMed Google Scholar
Stone, J. D. et al. Aberrant TCR-mediated signaling in CD45-null thymocytes involves dysfunctional regulation of Lck, Fyn, TCR-ζ, and ZAP-70. J. Immunol.158, 5773–5782 (1997). CASPubMed Google Scholar
Tang, Q. et al. The Src family kinase Fyn mediates signals induced by TCR antagonists. J. Immunol.168, 4480–4487 (2002). CASPubMed Google Scholar
Naramura, M. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nature Immunol.3, 1192–1199 (2002). CAS Google Scholar
Ohba, Y. et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J.20, 3333–3341 (2001). CASPubMedPubMed Central Google Scholar
Rangarajan, S. et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the β2-adrenergic receptor. J. Cell Biol.160, 487–493 (2003). Demonstrated for the first time the requirement of endogenous Rap for integrin activation by the use of 8-pCPT-2′-O-Me-cAMP, a specific activator of the RapGEF Epac. CASPubMedPubMed Central Google Scholar
Bertoni, A. et al. Relationships between Rap1b, affinity modulation of integrin αIIbβ3, and the actin cytoskeleton. J. Biol. Chem.277, 25715–25721 (2002). Demonstrated the requirement for Rap1 in maintaining integrin in an active conformation. CASPubMed Google Scholar
de Bruyn, K. M., Rangarajan, S., Reedquist, K. A., Figdor, C. G. & Bos, J. L. The small GTPase Rap1 is required for Mn(2+)- and antibody-induced LFA-1- and VLA-4-mediated cell adhesion. J. Biol. Chem.277, 29468–29476 (2002). CASPubMed Google Scholar
Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nature Immunol.4, 741–748 (2003). Identified Nore1/RapL as the Rap effector that might provide Rap with a direct link to integrin activation. CAS Google Scholar
Tommasi, S. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene21, 2713–2720 (2002). CASPubMed Google Scholar
Ohba, Y., Kurokawa, K. & Matsuda, M. Mechanism of the spatio–temporal regulation of Ras and Rap1. EMBO J.22, 859–869 (2003). CASPubMedPubMed Central Google Scholar
Marte, B. M., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. & Downward, J. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr. Biol.7, 63–70 (1997). CASPubMed Google Scholar
Gao, X. et al. Identification and characterization of RA-GEF-2, a Rap guanine nucleotide exchange factor that serves as a downstream target of M-Ras. J. Biol. Chem.276, 42219–42225 (2001). CASPubMed Google Scholar
O'Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol.124, 1047–1059 (1994). CASPubMed Google Scholar
Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem.277, 21749–21758 (2002). CASPubMed Google Scholar
Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell3, 569–579 (2002). CASPubMed Google Scholar
Yan, B., Calderwood, D. A., Yaspan, B. & Ginsberg, M. H. Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem.276, 28164–28170 (2001). CASPubMed Google Scholar
Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem.276, 21217–21227 (2001). CASPubMed Google Scholar
Manes, S. et al. Membrane raft microdomains in chemokine receptor function. Semin. Immunol.13, 147–157 (2001). CASPubMed Google Scholar
Pande, G. The role of membrane lipids in regulation of integrin functions. Curr. Opin. Cell. Biol.12, 569–574 (2000). CASPubMed Google Scholar
Zhao, J., Kung, H. F. & Manne, V. Farnesylation of p21 Ras proteins in Xenopus oocytes. Cell. Mol. Biol. Res.40, 313–321 (1994). CASPubMed Google Scholar
Rowell, C. A., Kowalczyk, J. J., Lewis, M. D. & Garcia, A. M. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J. Biol. Chem.272, 14093–14097 (1997). CASPubMed Google Scholar
Dong, D. L., Liu, R., Sherlock, R., Wigler, M. H. & Nestler, H. P. Molecular forceps from combinatorial libraries prevent the farnesylation of Ras by binding to its carboxyl terminus. Chem. Biol.6, 133–141 (1999). CASPubMed Google Scholar
Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science275, 1796–1800 (1997). CASPubMed Google Scholar
Hancock, J. F., Cadwallader, K. & Marshall, C. J. Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J.10, 641–646 (1991). CASPubMedPubMed Central Google Scholar
Volker, C. & Stock, J. B. Carboxyl methylation of Ras-related proteins. Methods. Enzymol.255, 65–82 (1995). CASPubMed Google Scholar
Philips, M. R. et al. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils. Science259, 977–980 (1993). CASPubMed Google Scholar
Clarke, S., Vogel, J. P., Deschenes, R. J. & Stock, J. Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc. Natl Acad. Sci. USA85, 4643–4647 (1988). CASPubMedPubMed Central Google Scholar
Chen, Z. Q., Ulsh, L. S., DuBois, G. & Shih, T. Y. Posttranslational processing of p21 ras proteins involves palmitylation of the C-terminal tetrapeptide containing cysteine-186. J. Virol.56, 607–612 (1985). CASPubMedPubMed Central Google Scholar
Coats, S. G., Booden, M. A. & Buss, J. E. Transient palmitoylation supports H-Ras membrane binding but only partial biological activity. Biochemistry38, 12926–12934 (1999). CASPubMed Google Scholar
Kato, K., Der, C. J. & Buss, J. E. Prenoids and palmitate: lipids that control the biological activity of Ras proteins. Semin. Cancer Biol.3, 179–188 (1992). CASPubMed Google Scholar
Hancock, J. F., Cadwallader, K., Paterson, H. & Marshall, C. J. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J.10, 4033–4039 (1991). CASPubMedPubMed Central Google Scholar
Jackson, J. H., Li, J. W., Buss, J. E., Der, C. J. & Cochrane, C. G. Polylysine domain of K-ras 4B protein is crucial for malignant transformation. Proc. Natl Acad. Sci. USA91, 12730–12734 (1994). CASPubMedPubMed Central Google Scholar
Niv, H., Gutman, O., Kloog, Y. & Henis, Y. I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol.157, 865–872 (2002). CASPubMedPubMed Central Google Scholar
Prior, I. A. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nature Cell. Biol.3, 368–375 (2001). CASPubMed Google Scholar
Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell. Biol.160, 165–170 (2003). CASPubMedPubMed Central Google Scholar
Prior, I. A. & Hancock, J. F. Compartmentalization of Ras proteins. J. Cell. Sci.114, 1603–1608 (2001). CASPubMed Google Scholar
Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell103, 931–943 (2000). CASPubMed Google Scholar
Corbett, K. D. & Alber, T. The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem. Sci.26, 710–716 (2001). CASPubMed Google Scholar
Voice, J. K., Klemke, R. L., Le, A. & Jackson, J. H. Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility. J. Biol. Chem.274, 17164–17170 (1999). CASPubMed Google Scholar
Kimmelman, A., Tolkacheva, T., Lorenzi, M. V., Osada, M. & Chan, A. M. Identification and characterization of R-ras3: a novel member of the RAS gene family with a non-ubiquitous pattern of tissue distribution. Oncogene15, 2675–2685 (1997). CASPubMed Google Scholar
Quilliam, L. A. et al. M-Ras/R-Ras3, a transforming ras protein regulated by Sos1, GRF1, and p120 Ras GTPase-activating protein, interacts with the putative Ras effector AF6. J. Biol. Chem.274, 23850–23857 (1999). CASPubMed Google Scholar
York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature392, 622–626 (1998). CASPubMed Google Scholar
Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature370, 527–532 (1994). CASPubMed Google Scholar
Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem.273, 24052–24056 (1998). CASPubMed Google Scholar
Kimmelman, A. C., Osada, M. & Chan, A. M. R-Ras3, a brain-specific Ras-related protein, activates Akt and promotes cell survival in PC12 cells. Oncogene19, 2014–2022 (2000). CASPubMed Google Scholar
Rose, D. M., Cardarelli, P. M., Cobb, R. R. & Ginsberg, M. H. Soluble VCAM-1 binding to α4 integrins is cell-type specific and activation dependent and is disrupted during apoptosis in T cells. Blood95, 602–609 (2000). CASPubMed Google Scholar