Lateral phosphorylation propagation: an aspect of feedback signalling? (original) (raw)

References

  1. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. H. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).
    Article CAS Google Scholar
  2. Sawano, A., Takayama, S., Matsuda, M. & Miyawaki, A. Lateral propagation of EGF signalling after local stimulation is dependent on receptor density. Dev. Cell 3, 245–257 (2002).
    Article CAS Google Scholar
  3. Hubbard, S. R., Mohammadi, M. & Schlessinger, J. Autoregulatory mechanisms in protein tyrosine kinases. J. Biol. Chem. 273, 11987–11990 (1998).
    Article CAS Google Scholar
  4. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).
    Article CAS Google Scholar
  5. Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B. J. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938–21942 (2001).
    Article CAS Google Scholar
  6. Bae, Y. S. et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).
    Article CAS Google Scholar
  7. Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248–253 (1998).
    Article CAS Google Scholar
  8. Meng, T. C., Fukada, T. & Tonks, N. K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).
    Article CAS Google Scholar
  9. Denu, J. M. & Tanner, K. G. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642 (1998).
    Article CAS Google Scholar
  10. Ostman, A. & Bohmer, D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol. 11, 258–266 (2001).
    Article CAS Google Scholar
  11. Reynolds, A., Tischer, C., Verveer, P. J., Rocks, O. & Bastiaens, P. I. H. Epidermal growth factor receptor activation coupled to inhibition of protein tyrosine phosphatases causes lateral signal propagation. Nature Cell Biol. 5, 447–453 (2003).
    Article CAS Google Scholar
  12. Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).
    Article CAS Google Scholar
  13. Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signalling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, 1005–1028 (2000).
    Article Google Scholar
  14. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).
    Article CAS Google Scholar
  15. Bertics, P. J. & Gill, G. N. Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor. J. Biol. Chem. 260, 14642–14647 (1985).
    CAS Google Scholar
  16. Hsu, C. Y., Hurwitz, D. R., Mervic, M. & Zilberstein, A. Autophosphorylation of the intracellular domain of the epidermal growth factor receptor results in different effects on its tyrosine kinase activity with various peptide substrates. Phosphorylation of peptides representing Tyr(P) sites of phospholipase C-γ. J. Biol. Chem. 266, 603–608 (1991).
    CAS Google Scholar
  17. Gotoh, N., Tojo, A., Hino, M., Yazaki, Y. & Shibuya, M. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor. Biochem. Biophys. Res. Commun. 186, 768–774 (1992).
    Article CAS Google Scholar
  18. Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).
    Article CAS Google Scholar
  19. Ferrell, J. E. & Xiong, W. Bistability in cell signaling: How to make continuous processes discontinuous and reversible processes irreversible. Chaos 11, 227–236 (2001).
    Article CAS Google Scholar
  20. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggels and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).
    Article CAS Google Scholar
  21. Macinnis, B. L. & Campenot, R. B. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 295, 1536–1539 (2002).
    Article CAS Google Scholar
  22. Senger, D. L. & Campenot, R. B. Rapid retrograde tyrosine phosphorylation of trkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell Biol. 138, 411–421 (1997).
    Article CAS Google Scholar
  23. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).
    Article CAS Google Scholar
  24. Einstein, A. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560 (1905).
    Article CAS Google Scholar
  25. Murray, J. D. Mathematical Biology (Springer Verlag, Berlin, 1993).
    Google Scholar

Download references