Pendergast, A. M. The Abl family kinases: mechanisms of regulation and signaling. Adv. Cancer Res.85, 51–100 (2002). An extremely comprehensive review article covering, in particular, all aspects of Abl signalling mechanisms and cellular functions. ArticleCASPubMed Google Scholar
Woodring, P. J., Hunter, T. & Wang, J. Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci.116, 2613–2626 (2003). ArticleCASPubMed Google Scholar
Smith, J. M. & Mayer, B. J. Abl: mechanisms of regulation and activation. Front. Biosci.7, d31–d42 (2002). ArticleCASPubMed Google Scholar
Advani, A. S. & Pendergast, A. M. Bcr–Abl variants: biological and clinical aspects. Leuk. Res.26, 713–720 (2002). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Chronic myelogenous leukemia. Hematology (Am. Soc. Hematol. Educ. Program) 87–112 (2001).
Van Etten, R. A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol.9, 179–186 (1999). ArticleCASPubMed Google Scholar
Abelson, H. T. & Rabstein, L. S. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res.30, 2213–2222 (1970). The historic paper describing the identification of v-Abl from Moloney murine leukaemia virus. CASPubMed Google Scholar
Abelson, H. T. & Rabstein, L. S. Influence of prednisolone on Moloney leukemogenic virus in BALB-c mice. Cancer Res.30, 2208–2212 (1970). CASPubMed Google Scholar
Wang, J. Y. & Baltimore, D. Cellular RNA homologous to the Abelson murine leukemia virus transforming gene: expression and relationship to the viral sequence. Mol. Cell. Biol.3, 773–779 (1983). ArticleCASPubMedPubMed Central Google Scholar
Raitano, A. B., Whang, Y. E. & Sawyers, C. L. Signal transduction by wild-type and leukemogenic Abl proteins. Biochim. Biophys. Acta1333, F201–F216 (1997). CASPubMed Google Scholar
Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science247, 824–830 (1990). ArticleCASPubMed Google Scholar
Goldman, J. M. & Melo, J. V. Chronic myeloid leukemia — advances in biology and new approaches to treatment. N. Engl. J. Med.349, 1451–1464 (2003). ArticleCASPubMed Google Scholar
McWhirter, J. R., Galasso, D. L. & Wang, J. Y. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr–Abl oncoproteins. Mol. Cell. Biol.13, 7587–7595 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Subrahmanyam, R., Wong, R., Gross, A. W. & Ren, R. The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr–Abl. Mol. Cell. Biol.21, 840–853 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhao, X., Ghaffari, S., Lodish, H., Malashkevich, V. N. & Kim, P. S. Structure of the Bcr–Abl oncoprotein oligomerization domain. Nature Struct. Biol.7, 117–120 (2002). Google Scholar
Smith, K. M. & Van Etten, R. A. Activation of c-Abl kinase activity and transformation by a chemical inducer of dimerization. J. Biol. Chem.276, 24372–24379 (2001). ArticleCASPubMed Google Scholar
Superti-Furga, G. & Courtneidge, S. A. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays17, 321–330 (1995). ArticleCASPubMed Google Scholar
Smith, C. I. et al. The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species. Bioessays23, 436–446 (2001). ArticleCASPubMed Google Scholar
Smith, J. M., Katz, S. & Mayer, B. J. Activation of the abl tyrosine kinase in vivo by src homology 3 domains from the src homology 2/Src homology 3 adaptor Nck. J. Biol. Chem.274, 27956–27962 (1999). ArticleCASPubMed Google Scholar
Shafman, T. et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature387, 520–523 (1997). ArticleCASPubMed Google Scholar
Goga, A., et al. p53 dependent growth suppression by the c-Abl nuclear tyrosine kinase. Oncogene11, 791–799 (1995). CASPubMed Google Scholar
Welch, P. J. & Wang, J. Y. J. A c-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-abl tyrosine kinase in the cell-cycle. Cell75, 779–790 (1993). ArticleCASPubMed Google Scholar
Baskaran, R., Chiang, G. G. & Wang, J. Y. Identification of a binding site in c-Abl tyrosine kinase for the C-terminal repeated domain of RNA polymerase II. Mol. Cell. Biol.16, 3361–3369 (1996). ArticleCASPubMedPubMed Central Google Scholar
David-Cordonnier, M. H. et al. The DNA-binding domain of human c-Abl tyrosine kinase promotes the interaction of a HMG chromosomal protein with DNA. Nucleic Acids Res.27, 2265–2270 (1999). ArticleCASPubMedPubMed Central Google Scholar
Van Etten, R. A. et al. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J. Cell Biol.124, 325–340 (1994). ArticleCASPubMed Google Scholar
Van Etten, R. A., Jackson, P. & Baltimore, D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell58, 669–678 (1989). ArticleCASPubMed Google Scholar
Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature385, 595–601 (1997). ArticleCASPubMed Google Scholar
Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature385, 602–609 (1997). ArticleCASPubMed Google Scholar
Williams, J. C. et al. The 2.35 Å crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J. Mol. Biol.274, 757–775 (1997). ArticleCASPubMed Google Scholar
Barilá, D. & Superti-Furga, G. An intramolecular SH3-domain interaction regulates c-Abl activity. Nature Genet.18, 280–282 (1998). The article that first suggested c-Abl to be regulated by an intramolecular interaction involving the SH3 domain, the SH2–kinase linker and the small lobe. The structural model proposed, which includes a unique salt-bridge between the SH3 domain and the small lobe, is basically identical to the structure of regulated c-Abl determined five years later. ArticlePubMed Google Scholar
Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell105, 115–126 (2001). ArticleCASPubMed Google Scholar
Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell112, 845–857 (2003). References 32 and 40 show the structure of regulated c-Abl, its autoinhibition mechanism, binding of the myristoyl group to the kinase domain, SH2 domain occlusion, activation by phosphotyrosine and conformational dependence for STI-571 binding. ArticleCASPubMed Google Scholar
Barilá, D. et al. A nuclear tyrosine phosphorylation circuit: c-Jun as an activator and substrate of c-Abl and JNK. EMBO J.19, 273–281 (2000). ArticlePubMedPubMed Central Google Scholar
Juang, J. L. & Hoffmann, F. M. Drosophila Abelson interacting protein (dAbi) is a positive regulator of Abelson tyrosine kinase activity. Oncogene18, 5138–5147 (1999). ArticleCASPubMed Google Scholar
Lewis, J. M. & Schwartz, M. A. Integrins regulate the association and phosphorylation of paxillin by c-Abl. J. Biol. Chem.273, 14225–14230 (1998). ArticleCASPubMed Google Scholar
Miyoshi-Akiyama, T., Aleman, L. M., Smith, J. M., Adler, C. E. & Mayer, B. J. Regulation of Cbl phosphorylation by the Abl tyrosine kinase and the Nck SH2/SH3 adaptor. Oncogene20, 4058–4069 (2001). ArticleCASPubMed Google Scholar
Roig, J., Tuazon, P. T., Zipfel, P. A., Pendergast, A. M. & Traugh, J. A. Functional interaction between c-Abl and the p21-activated protein kinase γ-PAK. Proc. Natl Acad. Sci. USA97, 14346–14351 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zukerberg, L. R. et al. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron26, 633–646 (2000). ArticleCASPubMed Google Scholar
Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science289, 1938–1942 (2000). Showed the structural basis for STI-571 inhibition and the first structure of the Abl kinase domain. ArticleCASPubMed Google Scholar
Nagar, B. et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res.62, 4236–4243 (2002). CASPubMed Google Scholar
Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell109, 275–282 (2002). A hallmark review for readers interested in the structural basis for the diverse mechanisms of protein kinase inhibition. ArticleCASPubMed Google Scholar
Yamaguchi, H. & Hendrickson, W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature384, 484–489 (1996). ArticleCASPubMed Google Scholar
Franz, W. M., Berger, P. & Wang, J. Y. J. Deletion of an N-terminal regulatory domain of the c-Abl tyrosine kinase activates its oncogenic potential. EMBO J.8, 137–147 (1989). ArticleCASPubMedPubMed Central Google Scholar
Daley, G. Q., Van Etten, R. A., Jackson, P. K., Bernards, A. & Baltimore, D. Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. Mol. Cell. Biol.12, 1864–1871 (1992). ArticleCASPubMedPubMed Central Google Scholar
Brasher, B. B. & Van Etten, R. A. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J. Biol. Chem.275, 35631–35637 (2000). ArticleCASPubMed Google Scholar
Dorey, K. et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase. Oncogene20, 8075–8084 (2001). ArticleCASPubMed Google Scholar
Jackson, P. & Baltimore, D. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-Abl. EMBO J.8, 449–456 (1989). ArticleCASPubMedPubMed Central Google Scholar
Van Etten, R. A., Debnath, J., Zhou, H. & Casasnovas, J. M. Introduction of a loss-of-function point mutation from the SH3 region of the Caenorhabditis elegans Sem-5 gene activates the transforming ability of c-Abl in vivo and abolishes binding of proline-rich ligands in vitro. Oncogene10, 1977–1988 (1995). CASPubMed Google Scholar
Reynolds, F. H. Jr., Oroszlan, S. & Stephenson, J. R. Abelson murine leukemia virus P120: identification and characterization of tyrosine phosphorylation sites. J. Virol.44, 1097–1101 (1982). CASPubMedPubMed Central Google Scholar
Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A. & Pendergast, A. M. c-Abl is activated by growth factors and src family kinases and has a role in the cellular response to PDGF. Genes Dev.13, 2400–2411 (1999). ArticleCASPubMedPubMed Central Google Scholar
Furstoss, O. et al. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis. EMBO J.21, 514–524 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tanis, K. Q., Veach, D., Duewel, H. S., Bornmann, W. G. & Koleske, A. J. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Mol. Cell. Biol.23, 3884–3896 (2003). ArticleCASPubMedPubMed Central Google Scholar
Steen, H., Fernandez, M., Ghaffari, S., Pandey, A. & Mann, M. Phosphotyrosine mapping in Bcr/Abl oncoprotein using phosphotyrosine-specific immonium ion scanning. Mol. Cell Proteomics2, 138–145 (2003). ArticleCASPubMed Google Scholar
Salomon, A. R. et al. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl Acad. Sci. USA100, 443–448 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pendergast, A. M. et al. BCR–ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell75, 175–185 (1993). ArticleCASPubMed Google Scholar
Gould, K. L. & Nurse, P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature342, 39–45 (1989). ArticleCASPubMed Google Scholar
McGowan, C. H. & Russell, P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J.12, 75–85 (1993). ArticleCASPubMedPubMed Central Google Scholar
Roumiantsev, S. et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc. Natl Acad. Sci. USA99, 10700–10705 (2002). Contains the first evidence for a correlation between regulatory mutations and drug resistance. ArticleCASPubMedPubMed Central Google Scholar
Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/Imatinib resistance revealed by mutagenesis of BCR–ABL. Cell112, 831–843 (2003). This groundbreaking paper changed the view of how Bcr–Abl functions, and will guide Abl researchers for the following years. ArticleCASPubMed Google Scholar
Allen, P. B. & Wiedemann, L. M. An activating mutation in the ATP binding site of the ABL kinase domain. J. Biol. Chem.271, 19585–19591 (1996). ArticleCASPubMed Google Scholar
Brasher, B. B., Roumiantsev, S. & Van Etten, R. A. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Oncogene20, 7744–7752 (2001). ArticleCASPubMed Google Scholar
Musacchio, A., Wilmanns, M. & Saraste, M. Structure and function of the SH3 domain. Prog. Biophys. Mol. Biol.61, 283–297 (1994). ArticleCASPubMed Google Scholar
Zhou, H. X. How often does the myristoylated N-terminal latch of c-Abl come off? FEBS Lett.552, 160–162 (2003). ArticleCASPubMed Google Scholar
Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol.293, 321–331 (1999). ArticleCASPubMed Google Scholar
Plattner, R. et al. A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1. Nature Cell Biol.5, 309–319 (2003). ArticleCASPubMed Google Scholar
Plattner, R. & Pendergast, A. M. Activation and signaling of the Abl tyrosine kinase: bidirectional link with phosphoinositide signaling. Cell Cycle2, 273–274 (2003). ArticleCASPubMed Google Scholar
Woodring, P. J., Hunter, T. & Wang, J. Y. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J. Biol. Chem.276, 27104–27110 (2001). ArticleCASPubMed Google Scholar
Woodring, P. J. et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J. Cell Biol.156, 879–892 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wen, S. -T. & Van Etten, R. A. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev.11, 2456–2467 (1997). ArticleCASPubMedPubMed Central Google Scholar
Neumann, C. A. et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature424, 561–565 (2003). ArticleCASPubMed Google Scholar
Baskaran, R. et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature387, 516–519 (1997). ArticleCASPubMed Google Scholar
Kharbanda, S. et al. Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature386, 732–735 (1997). ArticleCASPubMed Google Scholar
Bhatnagar, R. S. et al. Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. Nature Struct. Biol.5, 1091–1097 (1998). ArticleCASPubMed Google Scholar
Farazi, T. A., Waksman, G. & Gordon, J. I. The biology and enzymology of protein N–myristoylation. J. Biol. Chem.276, 39501–39504 (2001). ArticleCASPubMed Google Scholar
Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta1451, 1–16 (1999). An extremely interesting review discussing the different mechanisms and functions of protein myristoylation and palmitoylation. ArticleCASPubMed Google Scholar
Resh, M. D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell76, 411–413 (1994). ArticleCASPubMed Google Scholar
Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ.6, 1028–1042 (1999). ArticleCASPubMed Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science298, 1912–1934 (2002). ArticleCASPubMed Google Scholar
Cox, S., Radzio-Andzelm, E. & Taylor, S. S. Domain movements in protein kinases. Curr. Opin. Struct. Biol.4, 893–901 (1994). ArticleCASPubMed Google Scholar
Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res.56, 100–104 (1996). First report about the selective inhibition of Abl and PDGF-R by STI-571. CASPubMed Google Scholar
Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nature Med.2, 561–566 (1996). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Heinrich, M. C. et al. Inhibition of c-kit receptor tyrosine kinase activity by STI-571, a selective tyrosine kinase inhibitor. Blood96, 925–932 (2000). CASPubMed Google Scholar
Heinrich, M. C. et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science299, 708–710 (2003). ArticleCASPubMed Google Scholar
Hochhaus, A. et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia16, 2190–2196 (2002). ArticleCASPubMed Google Scholar
Mayer, B. J. SH3 domains: complexity in moderation. J. Cell Sci.114, 1253–1263 (2001). CASPubMed Google Scholar
Pawson, T., Gish, G. D. & Nash, P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol.11, 504–511 (2001). ArticleCASPubMed Google Scholar