Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell52, 311–320 (1988). Describes the initial screen forpargenes. CASPubMed Google Scholar
Schneider, S. Q. & Bowerman, B. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet.37, 221–249 (2003). An excellent, comprehensive review of cell polarity inC. elegans. CASPubMed Google Scholar
Gomes, J. E. & Bowerman, B. Caenorhabditis elegans par genes. Curr. Biol.12, R444 (2002). CASPubMed Google Scholar
Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development125, 3607–3614 (1998). CASPubMed Google Scholar
Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell81, 611–620 (1995). ArticleCASPubMed Google Scholar
Watts, J. L., Morton, D. G., Bestman, J. & Kemphues, K. J. The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development127, 1467–1475 (2000). CASPubMed Google Scholar
Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development126, 127–135 (1999). CASPubMed Google Scholar
Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell83, 743–752 (1995). CASPubMed Google Scholar
Morton, D. G. et al. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev. Biol.241, 47–58 (2002). CASPubMed Google Scholar
Levitan, D. J., Boyd, L., Mello, C. C., Kemphues, K. J. & Stinchcomb, D. T. par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs. Proc. Natl Acad. Sci. USA91, 6108–6112 (1994). CASPubMedPubMed Central Google Scholar
Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol.2, 531–539 (2000). Describes the interaction of PAR6 with CDC42 and the first evidence that PAR6 regulates polarity in mammalian epithelial cells. CASPubMed Google Scholar
Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol.143, 95–106 (1998). CASPubMedPubMed Central Google Scholar
Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved Par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol.152, 1183–1196 (2001). Provides the first evidence that aPKC regulates mammalian epithelial cell polarization. CASPubMedPubMed Central Google Scholar
Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol.2, 540–547 (2000). Reports the interaction of CDC42 with PAR6. CASPubMed Google Scholar
Benton, R. & Johnston, D. S. A conserved oligomerization domain in Drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity. Curr. Biol.13, 1330–1334 (2003). CASPubMed Google Scholar
Mizuno, K. et al. Self-association of PAR-3-mediated by the conserved N-terminal domain contributes to the development of epithelial tight junctions. J. Biol. Chem.278, 31240–31250 (2003). CASPubMed Google Scholar
Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature421, 379–384 (2003). CASPubMed Google Scholar
Hurd, T. W. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol.13, 2082–2090 (2003). CASPubMed Google Scholar
Benton, R. & Johnston, D. S. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR–3 to establish complementary cortical domains in polarized cells. Cell115, 691–704 (2003). Identifies Par3 as a Par1 substrate and a Par5 binding partner, and shows that phosphorylation regulates the localization of Par3. CASPubMed Google Scholar
Ossipova, O., Bardeesy, N., DePinho, R. A. & Green, J. B. LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nature Cell Biol.5, 889–894 (2003). CASPubMed Google Scholar
Johnson, D. I. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev.63, 54–105 (1999). CASPubMedPubMed Central Google Scholar
Schuyler, S. C. & Pellman, D. Search, capture and signal: games microtubules and centrosomes play. J. Cell Sci.114, 247–255 (2001). CASPubMed Google Scholar
Gotta, M., Abraham, M. C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol.11, 482–488 (2001). CASPubMed Google Scholar
Kay, A. J. & Hunter, C. P. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr. Biol.11, 474–481 (2001). CASPubMed Google Scholar
Qiu, R. G., Abo, A. & Steven Martin, G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol.10, 697–707 (2000). CASPubMed Google Scholar
Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci.113, 3267–3275 (2000). CASPubMed Google Scholar
Gao, L., Joberty, G. & Macara, I. G. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr. Biol.12, 221–225 (2002). CASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell106, 489–498 (2001). Links PAR6 to the polarization of migrating astrocytes. CASPubMed Google Scholar
Meili, R. & Firtel, R. A. Two poles and a compass. Cell114, 153–156 (2003). CASPubMed Google Scholar
Iijima, M., Huang, Y. E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell3, 469–478 (2002). CASPubMed Google Scholar
Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol.4, 513–518 (2002). CASPubMed Google Scholar
Li, Z. et al. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell114, 215–227 (2003).Identifies a new pathway linking CDC42 to the polarization of neutrophils that are undergoing chemotaxis. CASPubMed Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell114, 201–214 (2003). CASPubMed Google Scholar
Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell112, 63–75 (2003). CASPubMed Google Scholar
Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell–cell contact-induced formation of the epithelial junctional complex. Genes Cells6, 721–731 (2001). CASPubMed Google Scholar
Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem.270, 29071–29074 (1995). CASPubMed Google Scholar
Garrard, S. M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J.22, 1125–1133 (2003). CASPubMedPubMed Central Google Scholar
Hirose, T. et al. Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J. Cell Sci.115, 2485–2495 (2002). CASPubMed Google Scholar
Nagai-Tamai, Y., Mizuno, K., Hirose, T., Suzuki, A. & Ohno, S. Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells7, 1161–1171 (2002). CASPubMed Google Scholar
Gao, L., Macara, I. G. & Joberty, G. Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene294, 99–107 (2002). CASPubMed Google Scholar
Gonzalez-Mariscal, L., Betanzos, A., Nava, P. & Jaramillo, B. E. Tight junction proteins. Prog. Biophys. Mol. Biol.81, 1–44 (2003). CASPubMed Google Scholar
Tsukita, S. & Furuse, M. Claudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell Biol.14, 531–536 (2002). CASPubMed Google Scholar
Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet.35, 747–784 (2001). CASPubMed Google Scholar
Bachmann, A., Schneider, M., Theilenberg, E., Grawe, F. & Knust, E. Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature414, 638–643 (2001). CASPubMed Google Scholar
Medina, E., Lemmers, C., Lane-Guermonprez, L. & Le Bivic, A. Role of the Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biol. Cell94, 305–313 (2002). CASPubMed Google Scholar
Hong, Y., Stronach, B., Perrimon, N., Jan, L. Y. & Jan, Y. N. Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature414, 634–638 (2001). CASPubMed Google Scholar
Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol.134, 149–163 (1996). CASPubMed Google Scholar
Roh, M. H. et al. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J. Cell Biol.157, 161–172 (2002). Identifies mammalian homologues ofD. melanogasterpolarity proteins and shows that they form a complex at tight junctions in epithelial cells. CASPubMedPubMed Central Google Scholar
Roh, M. H., Liu, C. J., Laurinec, S. & Margolis, B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J. Biol. Chem.277, 27501–27509 (2002). CASPubMed Google Scholar
Makarova, O., Roh, M. H., Liu, C. J., Laurinec, S. & Margolis, B. Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene302, 21–29 (2003). CASPubMed Google Scholar
Lemmers, C. et al. hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J. Biol. Chem.277, 25408–25415 (2002). CASPubMed Google Scholar
Roh, M. H., Fan, S., Liu, C. J. & Margolis, B. The Crumbs3–Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. J. Cell Sci.116, 2895–2906 (2003). CASPubMed Google Scholar
Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol.5, 137–142 (2003). Demonstrates a physical link between PAR6–CDC42–PAR3 and the PALS1–CRB1–PATJ complex. CASPubMed Google Scholar
Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol.3, 43–49 (2001). CASPubMed Google Scholar
Ohno, S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol.13, 641–648 (2001). CASPubMed Google Scholar
Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell112, 535–548 (2003). CASPubMed Google Scholar
Tepass, U. Adherens junctions: new insight into assembly, modulation and function. Bioessays24, 690–695 (2002). CASPubMed Google Scholar
Takai, Y. & Nakanishi, H. Nectin and afadin: novel organizers of intercellular junctions. J. Cell Sci.116, 17–27 (2003). CASPubMed Google Scholar
Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature403, 676–680 (2000). CASPubMed Google Scholar
Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science289, 113–116 (2000). CASPubMed Google Scholar
Bossinger, O., Klebes, A., Segbert, C., Theres, C. & Knust, E. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev. Biol.230, 29–42 (2001). CASPubMed Google Scholar
Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol.5, 46–52 (2003). CASPubMed Google Scholar
Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol.5, 53–58 (2003). References 63 and 64 provide genetic evidence for links between distinct polarity complexes inD. melanogaster. CASPubMed Google Scholar
Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol.13, 734–743 (2003). Evidence that LGL1/2 interacts directly with PAR6 and is phosphorylated by aPKC. CASPubMed Google Scholar
Betschinger, J., Mechtler, K. & Knoblich, J. A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature422, 326–330 (2003).Elegant study on the identification and function of the Par6–Lgl interaction inD. melanogaster. CASPubMed Google Scholar
Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nature Cell Biol5, 301–308 (2003). Evidence for the interaction of PAR6 and LGL1/2. CASPubMed Google Scholar
Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell13, 158–168 (2002). CASPubMed Google Scholar
Wei, X. & Malicki, J. nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nature Genet.31, 150–157 (2002). CASPubMed Google Scholar
Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis. Curr. Biol.11, 1492–1502 (2001). CASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature421, 753–756 (2003). CASPubMed Google Scholar
Palazzo, A. F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol.11, 1536–1541 (2001). CASPubMed Google Scholar
Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol.3, 723–729 (2001). CASPubMed Google Scholar
Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell104, 923–935 (2001). Describes a mechanism for linking microtubules to the cell cortex by CLIP-binding proteins. CASPubMed Google Scholar
Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell96, 517–527 (1999). CASPubMed Google Scholar
Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell109, 873–885 (2002). CASPubMed Google Scholar
Coquelle, F. M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol.22, 3089–3102 (2002). CASPubMedPubMed Central Google Scholar
Cuenca, A. A., Schetter, A., Aceto, D., Kemphues, K. & Seydoux, G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development130, 1255–1265 (2003). CASPubMed Google Scholar
Guo, S. & Kemphues, K. J. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature382, 455–458 (1996). CASPubMed Google Scholar
Severson, A. F. & Bowerman, B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J. Cell Biol.161, 21–26 (2003). CASPubMedPubMed Central Google Scholar
Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol.10, 353–362 (2000). CASPubMed Google Scholar
Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell100, 399–409 (2000). References 81 and 82 identify Pins as a component of the asymmetric cell division machinery in neuroblasts. CASPubMed Google Scholar
Du, Q., Stukenberg, P. T. & Macara, I. G. A mammalian partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nature Cell Biol.3, 1069–1075 (2001). Identification of NuMA as the partner of PINS that regulates mitosis. CASPubMed Google Scholar
Bernard, M. L., Peterson, Y. K., Chung, P., Jourdan, J. & Lanier, S. M. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J. Biol. Chem.276, 1585–1593 (2001). CASPubMed Google Scholar
Colombo, K. et al. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science300, 1957–1961 (2003). LinksC. elegansPINS and Gα to PAR proteins. CASPubMed Google Scholar
Kimple, R. J., Kimple, M. E., Betts, L., Sondek, J. & Siderovski, D. P. Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature416, 878–881 (2002). CASPubMed Google Scholar
Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nature Cell Biol.3, 297–300 (2001). CASPubMed Google Scholar
Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev.17, 1225–1239 (2003). CASPubMedPubMed Central Google Scholar
Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol.13, 1029–1037 (2003). Identifies a role forC. elegansPINS in asymmetric cell division. CASPubMed Google Scholar
Schaefer, M., Petronczki, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell107, 183–194 (2001). Identifies a role for Gα in asymmetric cell division. CASPubMed Google Scholar
Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol.162, 623–633 (2003). CASPubMedPubMed Central Google Scholar
Zeng, C. NuMA: a nuclear protein involved in mitotic centrosome function. Microsc. Res. Tech.49, 467–477 (2000). CASPubMed Google Scholar
Du, Q., Taylor, L., Compton, D. A. & Macara, I. G. LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol.12, 1928–1933 (2002). CASPubMed Google Scholar
Kaushik, R., Yu, F., Chia, W., Yang, X. & Bahri, S. Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol. Biol. Cell14, 3144–3155 (2003). CASPubMedPubMed Central Google Scholar
Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell89, 297–308 (1997). CASPubMed Google Scholar
Blumer, J. B. et al. Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Giα. J. Biol. Chem.278, 23217–23220 (2003). CASPubMed Google Scholar
Pellettieri, J. & Seydoux, G. Anterior-posterior polarity in C. elegans and _Drosophila_—PARallels and differences. Science298, 1946–1950 (2002). CASPubMed Google Scholar
Jan, Y. N. & Jan, L. Y. Asymmetric cell division in the Drosophila nervous system. Nature Rev. Neurosci.2, 772–779 (2001). Valuable review on the molecular basis for polarization and asymmetric cell divisions. CAS Google Scholar
Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature402, 544–547 (1999). CASPubMed Google Scholar
Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature402, 548–551 (1999). CASPubMed Google Scholar
Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature408, 593–596 (2000). CASPubMed Google Scholar
Petritsch, C., Tavosanis, G., Turck, C. W., Jan, L. Y. & Jan, Y. N. The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev. Cell4, 273–281 (2003). CASPubMed Google Scholar
Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol.141, 1147–1157 (1998). CASPubMedPubMed Central Google Scholar
Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin–Darby canine kidney cells. Mol. Biol. Cell12, 2257–2274 (2001). CASPubMedPubMed Central Google Scholar
Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA92, 5027–5031 (1995). CASPubMedPubMed Central Google Scholar
Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit–Robo pathway. Cell107, 209–221 (2001). CASPubMed Google Scholar