Assembly and function of RNA silencing complexes (original) (raw)

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    Article CAS PubMed Google Scholar
  2. RNAi: A Guide to Gene Silencing (ed. Hannon, G. J.) (Cold Spring Harbor Laboratory Press, New York, 2003).
  3. Matzke, M. A. & Matzke, A. J. M. Planting the seeds of a new paradigm. PLoS Biol. 2, 582–586 (2004).
    CAS Google Scholar
  4. Pickford, A. S., Catalanotto, C., Cogoni, C. & Macino, G. Quelling in Neurospora crassa. Adv. Genet. 46, 277–303 (2002).
    CAS PubMed Google Scholar
  5. Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 4, 457–467 (2003).
    CAS Google Scholar
  6. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    Article CAS PubMed Google Scholar
  7. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).
    Article CAS PubMed Google Scholar
  8. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).
    Article CAS PubMed Google Scholar
  9. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).
    CAS PubMed Google Scholar
  10. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).
    CAS PubMed PubMed Central Google Scholar
  11. Tijsterman, M., Ketting, R. F. & Plasterk, R. H. The genetics of RNA silencing. Annu. Rev. Genet. 36, 489–519 (2002).
    CAS PubMed Google Scholar
  12. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).
    CAS PubMed Google Scholar
  13. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).
    CAS PubMed PubMed Central Google Scholar
  14. Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200 (2000).
    CAS PubMed Google Scholar
  15. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).
    CAS PubMed Google Scholar
  16. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).
    CAS PubMed Google Scholar
  17. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001). Delineated some of the roles of ATP during discrete phases of the RNAi pathway.
    CAS PubMed Google Scholar
  18. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).
    CAS PubMed PubMed Central Google Scholar
  19. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).
    CAS PubMed Google Scholar
  20. Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W. & Sontheimer, E. J. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004). This paper, together with reference 25, showed that Dcr is important for RISC function as well as for dsRNA processing, and provided an initial framework for the RISC-assembly pathway.
    CAS PubMed Google Scholar
  21. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).
    Article CAS PubMed Google Scholar
  22. Tabara, H., Yigit, E., Siomi, H. & Mello, C. C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002).
    CAS PubMed Google Scholar
  23. Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep. 5, 189–194 (2004).
    CAS PubMed PubMed Central Google Scholar
  24. Liu, Q. et al. 2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003). Identified the R2D2 protein and documented its role in the incorporation of siRNAs into RISC.
    CAS PubMed Google Scholar
  25. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).
    CAS PubMed Google Scholar
  26. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).
    CAS PubMed PubMed Central Google Scholar
  27. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).
    CAS PubMed PubMed Central Google Scholar
  28. Doi, N. et al. Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr. Biol. 13, 41–46 (2003).
    CAS PubMed Google Scholar
  29. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).
    CAS PubMed Google Scholar
  30. Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nature Biotechnol. 26 Dec 2004 (doi:10.1038/nbt1052).
  31. Kim, D.-H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotechnol. 26 Dec 2004 (doi:10.1038/nbt1051).
  32. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004). Demonstrated the requirement for D. melanogaster Armitage in RNAi, and provided an initial framework for the RISC-assembly pathway.
    CAS PubMed Google Scholar
  33. Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. Science 306, 1377–1380 (2004). Described the roles of Dcr2 and R2D2 in interacting with opposite ends of asymmetrical siRNAs.
    CAS PubMed Google Scholar
  34. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004). Showed that D. melanogaster Ago1 and Ago2 are specific to the miRNA and siRNA pathways, respectively, and that Ago2 is required for the unwinding of siRNA and for the later stages of siRISC assembly.
    CAS PubMed PubMed Central Google Scholar
  35. Lai, E. C. MicroRNAs: runts of the genome assert themselves. Curr. Biol. 13, R925–R936 (2003).
    CAS PubMed Google Scholar
  36. Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
    CAS PubMed Google Scholar
  37. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).
    CAS PubMed Google Scholar
  38. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of _Scarecrow_-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).
    CAS PubMed Google Scholar
  39. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, 642–652 (2004).
    CAS Google Scholar
  40. Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 431, 364–370 (2004).
    CAS PubMed Google Scholar
  41. Matzke, M., Mette, M. F., Kanno, T., Aufsatz, W. & Matzke, A. J. M. in RNAi: A Guide to Gene Silencing (ed. Hannon, G. J.) 43–64 (Cold Spring Harbor Laboratory Press, New York, 2003).
    Google Scholar
  42. Jorgensen, R. in RNAi: A Guide to Gene Silencing (ed. Hannon, G. J.) 5–22 (Cold Spring Harbor Laboratory Press, New York, 2003).
    Google Scholar
  43. Birchler, J. A., Pal-Bhadra, M. & Bhadra, U. in RNAi: A Guide to Gene Silencing (ed. Hannon, G. J.) 23–42 (Cold Spring Harbor Laboratory Press, New York, 2003).
    Google Scholar
  44. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).
    CAS PubMed PubMed Central Google Scholar
  45. Schwarz, D., Hutvagner, G., Haley, G. & Zamore, P. D. siRNAs function as guides, not primers, in the RNAi pathway in Drosophila and human cells. Mol. Cell 10, 537–548 (2002).
    CAS PubMed Google Scholar
  46. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell Biol. 5, 232–241 (2004).
    CAS Google Scholar
  47. Kennerdell, J. R., Yamaguchi, S. & Carthew, R. W. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev. 16, 1884–1889 (2002).
    CAS PubMed PubMed Central Google Scholar
  48. Ishizuka, A., Siomi, M. C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508 (2002).
    CAS PubMed PubMed Central Google Scholar
  49. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).
    CAS PubMed Google Scholar
  50. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003). This paper, together with reference 49, showed that selection of the siRNA guide strand is specified by the relative strength of base pairing at each end of an siRNA duplex.
    CAS PubMed Google Scholar
  51. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326–330 (2004).
    CAS Google Scholar
  52. Mittal, V. Improving the efficiency of RNA interference in mammals. Nature Rev. Genet. 5, 355–365 (2004).
    CAS PubMed Google Scholar
  53. Ma, J. -B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).
    CAS PubMed PubMed Central Google Scholar
  54. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol. 11, 576–577 (2004).
    CAS Google Scholar
  55. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).
    CAS PubMed PubMed Central Google Scholar
  56. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004). Described the roles of different domains of DCR in the dsRNA processing reaction.
    CAS PubMed Google Scholar
  57. Vazquez, F. et al. Endogenous _trans_-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).
    CAS PubMed Google Scholar
  58. Rand, T. A., Ginalski, K., Grishin, N. V. & Wang, X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl Acad. Sci. USA 101, 14385–14389 (2004).
    CAS PubMed PubMed Central Google Scholar
  59. Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496 (2002).
    CAS PubMed PubMed Central Google Scholar
  60. Caudy, A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003).
    CAS PubMed Google Scholar
  61. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004). This paper, together with references 67 and 71, described the endonucleolytic reaction that is catalysed by RISC, and provided initial mechanistic analyses of the reaction.
    CAS PubMed PubMed Central Google Scholar
  62. Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544–550 (2004).
    CAS PubMed PubMed Central Google Scholar
  63. Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474 (2003).
    PubMed Google Scholar
  64. Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol. 10, 1026–1032 (2003).
    CAS PubMed Google Scholar
  65. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003).
    CAS PubMed Google Scholar
  66. Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC Slicer activity. Science 305, 1434–1437 (2004). This paper, combined with reference 29, provided strong evidence that the PIWI domains of certain Ago proteins provide RISC with target-mRNA endonuclease activity.
    CAS PubMed Google Scholar
  67. Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol. 14, 787–791 (2004).
    CAS PubMed Google Scholar
  68. Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).
    CAS PubMed Google Scholar
  69. Djikeng, A., Shi, H., Tschudi, C., Shen, S. & Ullu, E. An siRNA ribonucleoprotein is found associated with polyribosomes in Trypanosoma brucei. RNA 9, 802–808 (2003).
    CAS PubMed PubMed Central Google Scholar
  70. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).
    CAS PubMed Google Scholar
  71. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004).
    CAS Google Scholar
  72. Hutvagner, G., Simard, M. J., Mello, C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol. 2, 1–11 (2004).
    Google Scholar
  73. Herschlag, D., Eckstein, F. & Cech, T. R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry 32, 8312–8321 (1993).
    CAS PubMed Google Scholar
  74. Sigel, R. K. O., Song, B. & Sigel, H. Stabilities and structures of metal ion complexes of adenosine 5′-_O_-thiomonophosphate (AMPS2-) in comparison with those of its parent nucleotide (AMP2-) in aqueous solution. J. Am. Chem. Soc. 119, 744–755 (1997).
    CAS Google Scholar
  75. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).
    CAS PubMed Google Scholar
  76. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).
    CAS PubMed Google Scholar
  77. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).
    CAS PubMed PubMed Central Google Scholar
  78. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).
    CAS PubMed Google Scholar
  79. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
    CAS PubMed Google Scholar
  80. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8. Science 304, 594–596 (2004).
    CAS PubMed Google Scholar
  81. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).
    CAS PubMed Google Scholar
  82. Pillai, R. S., Artus, C. G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525 (2004).
    CAS PubMed PubMed Central Google Scholar
  83. Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a _piwi_-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110, 689–699 (2002).
    CAS PubMed Google Scholar
  84. Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).
    CAS PubMed Google Scholar
  85. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).
    CAS PubMed Google Scholar
  86. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002).
    CAS PubMed Google Scholar
  87. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004).
    CAS PubMed Google Scholar
  88. Kawasaki, H. & Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217 (2004).
    CAS PubMed Google Scholar
  89. Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).
    CAS PubMed Google Scholar
  90. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).
    CAS PubMed Google Scholar
  91. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).
    CAS PubMed Google Scholar
  92. Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074 (2003).
    CAS PubMed Google Scholar
  93. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).
    CAS PubMed Google Scholar
  94. Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11, 214–218 (2004).
    CAS Google Scholar
  95. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).
    CAS PubMed Google Scholar
  96. Williams, R. W. & Rubin, G. M. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl Acad. Sci. USA 99, 6889–6894 (2002).
    CAS PubMed PubMed Central Google Scholar

Download references