Basement membrane proteoglycans: from cellar to ceiling (original) (raw)
Yurchenco, P. D., Amenta, P. S. & Patton, B. L. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol.22, 521–538 (2004). An excellent and comprehensive review on basement membrane constituents. ArticleCASPubMed Google Scholar
Kanwar, Y. S. & Farquhar, M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc. Natl Acad. Sci. USA76, 1303–1307 (1979). ArticleCASPubMedPubMed Central Google Scholar
Oh, S. P. et al. Isolation and sequencing of cDNAs for proteins with multiple domains of Gly-Xaa-Yaa repeats identify a distinct family of collagenous proteins. Proc. Natl Acad. Sci. USA91, 4229–4233 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rehn, M. & Pihlajaniemi, T. α1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution, and homology with type XV collagen. Proc. Natl Acad. Sci. USA91, 4234–4238 (1994). References 3 and 4 provide the first reports on collagen XVIII. ArticleCASPubMedPubMed Central Google Scholar
Iozzo, R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem.67, 609–652 (1998). ArticleCASPubMed Google Scholar
Bezakova, G. & Ruegg, M. A. New insights into the roles of agrin. Nature Rev. Mol. Cell Biol.4, 295–308 (2003). ArticleCAS Google Scholar
Iozzo, R. V. & San Antonio, J. D. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J. Clin. Invest.108, 349–355 (2001). ArticleCASPubMedPubMed Central Google Scholar
Li, D., Clark, C. C. & Myers, J. C. Basement membrane zone type XV collagen is a disulfide-bonded chondroitin sulfate proteoglycan in human tissues and cultured cells. J. Biol. Chem.275, 22339–22347 (2000). ArticleCASPubMed Google Scholar
Marneros, A. G. & Olsen, B. R. The role of collagen-derived proteolytic fragments in angiogenesis. Matrix Biol.20, 337–345 (2001). ArticleCASPubMed Google Scholar
Saarela, J., Rehn, M., Oikarinen, A., Autio-Harmainen, H. & Pihlajaniemi, T. The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am. J. Pathol.153, 611–626 (1998). ArticleCASPubMedPubMed Central Google Scholar
Muragaki, Y. et al. Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc. Natl Acad. Sci. USA92, 8763–8767 (1995). ArticleCASPubMedPubMed Central Google Scholar
Rehn, M. & Pihlajaniemi, T. Identification of three N-terminal ends of type XVIII collagen chains and tissue-specific differences in the expression of the corresponding transcripts. The longest form contains a novel motif homologous to rat and Drosophila frizzled proteins. J. Biol. Chem.270, 4705–4711 (1995). ArticleCASPubMed Google Scholar
Halfter, W., Dong, S., Schurer, B. & Cole, G. J. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J. Biol. Chem.273, 25404–25412 (1998). These authors discovered that collagen XVIII is a heparan sulphate proteoglycan. ArticleCASPubMed Google Scholar
Dong, G, Cole, G. J. & Halfter, W. Expression of collagen XVIII and localization of its glycosaminoglycan attachment sites. J. Biol. Chem.278, 1700–1707 (2003). ArticleCASPubMed Google Scholar
Pufe, T. et al. Endostatin/collagen XVIII — an inhibitor of angiogenesis — is expressed in cartilage and fibrocartilage. Matrix Biol.23, 267–276 (2004). ArticleCASPubMed Google Scholar
Amenta, P. S. et al. Proteoglycan-collagen XV in human tissues is seen linking banded collagen fibers subjacent to the basement membrane. J. Histochem. Cytochem.53, 165–176 (2005). ArticleCASPubMed Google Scholar
Ylikärppä, R. et al. Lack of type XVIII collagen results in anterior ocular defects. FASEB J.17, 2257–2259 (2003). By generating collagen-XVIII-null animals, these authors (references 17 and 18) provide compelling evidence for a principal role of collagen XVIII in eye development. ArticlePubMedCAS Google Scholar
Marneros, A. G. et al. Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J.23, 89–99 (2004). ArticleCASPubMed Google Scholar
Sertie, A. L. et al. Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Human Mol. Gen.9, 2051–2058 (2000). ArticleCAS Google Scholar
Suzuki, O. T. et al. Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am. J. Hum. Genet.71, 1320–1329 (2002). ArticleCASPubMedPubMed Central Google Scholar
Utriainen, A. et al. Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Human Mol. Gen.13, 2089–2099 (2004). ArticleCAS Google Scholar
Moulton, K. S. et al. Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation110, 1330–1336 (2004). ArticleCASPubMed Google Scholar
Elamaa, H., Sormunen, R., Rehn, M., Soininen, R. & Pihlajaniemi, T. Endostatin overexpression specifically in the lens and skin leads to cataract and ultrastructural alterations in basement membranes. Am. J. Pathol.166, 221–229 (2004). Article Google Scholar
Ackley, B. D. et al. The NC1/endostatin domain of Caenorhabditis elegans type XVIII collagen affects cell migration and axon guidance. J. Cell Biol.152, 1219–1232 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kliemann, S. E., Waetge, R. T., Suzuki, O. T., Passos-Bueno, M. R. & Rosemberg, S. Evidence of neuronal migration disorders in Knobloch syndrome: clinical and molecular analysis of two novel families. Am. J. Med. Genet.119, 15–19 (2003). Article Google Scholar
Ackley, B. D. et al. The basement membrane components nidogen and type XVIII collagen regulate organization of neuromuscular junctions in Caenorhabditis elegans. J. Neurosci.23, 3577–3587 (2003). ArticleCASPubMedPubMed Central Google Scholar
Eklund, L. et al. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc. Natl Acad. Sci. USA98, 1194–1199 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ylikärppä, R. et al. Double knockout mice reveal a lack of major functional compensation between collagens XV and XVIII. Matrix Biol.22, 443–448 (2003). ArticlePubMedCAS Google Scholar
Noonan, D. M. et al. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J. Biol. Chem.266, 22939–22947 (1991). The first complete characterization of the modular nature of perlecan protein core. ArticleCASPubMed Google Scholar
Iozzo, R. V., Cohen, I. R., Grä ssel, S. & Murdoch, A. D. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J.302, 625–639 (1994). ArticleCASPubMedPubMed Central Google Scholar
Dolan, M., Horchar, T., Rigatti, B. & Hassell, J. R. Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J. Biol. Chem.272, 4316–4322 (1997). ArticleCASPubMed Google Scholar
Friedrich, M. V. K. et al. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J. Mol. Biol.294, 259–270 (1999). ArticleCASPubMed Google Scholar
Rogalski, T. M., Williams, B. D., Mullen, G. P. & Moerman, D. G. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev.7, 1471–1484 (1993). ArticleCASPubMed Google Scholar
Cohen, I. R., Grä ssel, S., Murdoch, A. D. & Iozzo, R. V. Structural characterization of the complete human perlecan gene and its promoter. Proc. Natl Acad. Sci. USA90, 10404–10408 (1993). ArticleCASPubMedPubMed Central Google Scholar
Friedrich, M. V. K., Schneider, M., Timpl, R. & Baumgartner, S. Perlecan domain V of Drosophila melanogaster – sequence, recombinant analysis and tissue expression. Eur. J. Biochem.267, 3149–3159 (2000). ArticleCASPubMed Google Scholar
Iozzo, R. V. Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface. J. Cell Biol.99, 403–417 (1984). ArticleCASPubMed Google Scholar
Bix, G. & Iozzo, R. V. Matrix revolutions: 'tails' of basement-membrane components with angiostatic functions. Trends Cell Biol.15, 52–60 (2005). ArticleCASPubMed Google Scholar
SundarRaj, N., Fite, D., Ledbetter, S., Chakravarti, S. & Hassell, J. R. Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J. Cell Sci.108, 2663–2672 (1995). ArticleCASPubMed Google Scholar
Handler, M., Yurchenco, P. D. & Iozzo, R. V. Developmental expression of perlecan during murine embryogenesis. Dev. Dyn.210, 130–145 (1997). Comprehensive analysis of perlecan expression in murine development. ArticleCASPubMed Google Scholar
French, M. M. et al. Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. J. Cell Biol.145, 1103–1115 (1999). ArticleCASPubMedPubMed Central Google Scholar
Melrose, J., Smith, S. & Whitelock, J. Perlecan immunolocalizes to perichondrial vessels and canals in human fetal cartilaginous primordia in early vascular and matrix remodeling events associated with diarthrodial joint development. J. Histochem. Cytochem.52, 1405–1413 (2004). ArticleCASPubMedPubMed Central Google Scholar
Govindraj, P. et al. Isolation and identification of the major heparan sulfate proteoglycans in the developing bovine rib growth plate. J. Biol. Chem.277, 19461–19469 (2002). ArticleCASPubMed Google Scholar
Iozzo, R. V. & Murdoch, A. D. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J.10, 598–614 (1996). ArticleCASPubMed Google Scholar
Nugent, M. A., Nugent, H. M., Iozzo, R. V., Sanchack, K. & Edelman, E. R. Perlecan is required to inhibit thrombosis after deep vascular injury and contributes to endothelial cell-mediated inhibition of intimal hyperplasia. Proc. Natl Acad. Sci. USA97, 6722–6727 (2000). Presents compelling evidence for a role of perlecan in vascular injury. ArticleCASPubMedPubMed Central Google Scholar
Tapanadechopone, P., Tumova, S., Jiang, X. & Couchman, J. R. Epidermal transformation leads to increased perlecan synthesis with heparin-binding-growth-factor affinity. Biochem. J.355, 517–527 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jiang, J. et al. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis. J. Histochem. Cytochem.52, 1575–1590 (2004). ArticleCASPubMed Google Scholar
Hassell, J. R., Yamada, Y. & Arikawa-Hirasawa, E. Role of perlecan in skeletal development and diseases. Glycoconj. J.19, 263–267 (2003). Article Google Scholar
Arikawa-Hirasawa, E., Watanabe, E., Takami, H., Hassell, J. R. & Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nature Genet.23, 354–358 (1999). References 51 and 52 report the first characterization of perlecan-deficient mice and describe multiple vascular and cartilage abnormalities. ArticleCASPubMed Google Scholar
Costell, M. et al. Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ. Res.91, 158–164 (2002). ArticleCASPubMed Google Scholar
González-Iriarte, M. et al. Development of the coronary arteries in a murine model of transposition of great arteries. J. Mol. Cell. Cardio.35, 795–802 (2003). ArticleCAS Google Scholar
Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J.22, 236–245 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tran, P. -K. et al. Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ. Res.94, 550–558 (2004). ArticleCASPubMed Google Scholar
Zhou, Z. et al. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res.64, 4699–4702 (2004). The phenotype of perlecan-null mice is indeed complex, as shown by additional characterization of perlecan-deficient animals (references 53 and 54), or transgenic animals in which the heparan sulphate chains of perlecan were specifically targeted (references 55–57). ArticleCASPubMed Google Scholar
Arikawa-Hirasawa, E. et al. Dyssegmental dysplasia, Silverman–Handmaker type, is caused by functional null mutations of the perlecan gene. Nature Genet.27, 431–434 (2001). ArticleCASPubMed Google Scholar
Arikawa-Hirasawa, E., Wilcox, W. R. & Yamada, Y. Dyssegmental dysplasia, Silverman–Handmaker type: unexpected role of perlecan in cartilage development. Am. J. Med. Genet.106, 254–257 (2001). ArticleCASPubMed Google Scholar
Nicole, S. et al. Perlecan, the major proteoglycan of basement membranes, is altered in patients with Schwartz–Jampel syndrome (chondrodystrophic myotonia). Nature Genet.26, 480–483 (2000). ArticleCASPubMed Google Scholar
Arikawa-Hirasawa, E. et al. Structural and functional mutations of the perlecan gene cause Schwartz–Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am. J. Hum. Genet.70, 1368–1375 (2002). References 58–61 show a direct involvement of perlecan gene mutations in causing two distinct human genetic syndromes. ArticleCASPubMedPubMed Central Google Scholar
Cartaud, A. et al. MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J. Cell Biol.165, 505–515 (2004). ArticleCASPubMedPubMed Central Google Scholar
Arikawa-Hirasawa, E., Rossi, S. G., Rotundo, R. L. & Yamada, Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nature Neurosci.5, 119–123 (2002). ArticleCASPubMed Google Scholar
Voigt, A., Pflanz, R., Schafer, U. & Jackle, H. Perlecan participates in proliferation activation of quiescent Drosophila neuroblasts. Dev. Dyn.224, 403–412 (2002). ArticleCASPubMed Google Scholar
Park, Y. et al. Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev. Biol.253, 247–257 (2003). Shows that perlecan is directly involved in modulating growth factors and morphogens during development. ArticleCASPubMed Google Scholar
Rogalski, T. M., Gilchrist, E. J., Mullen, G. P. & Moerman, D. G. Mutations in the unc-52 gene responsible for body wall muscle defects in adult Caenorhabditis elegans are located in alternatively spliced exons. Genetics139, 159–169 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mullen, G. P., Rogalski, T. M., Bush, J. A., Gorji, P. R. & Moerman, D. G. Complex patterns of alternative splicing mediate the spatial and temporal distribution of perlecan/UNC-52 in Caenorhabditis elegans. Mol. Biol. Cell10, 3205–3221 (1999). ArticleCASPubMedPubMed Central Google Scholar
Merz, D. C., Alves, G., Kawano, T., Zheng, H. & Culotti, J. G. UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev. Biol.256, 173–186 (2003). ArticleCASPubMed Google Scholar
O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell88, 277–285 (1997). ArticleCASPubMed Google Scholar
Hohenester, E., Sasaki, T., Olsen, B. R. & Timpl, R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 Å resolution. EMBO J.17, 1656–1664 (1998). An important paper that reports the solution structure of the C-terminal end of collagen XVIII, endostatin. ArticleCASPubMedPubMed Central Google Scholar
Sasaki, T. et al. Structural basis and potential role of heparin/heparan sulfate binding to the angiogenesis inhibitor endostatin. EMBO J.18, 6240–6248 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kreuger, J. et al. Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO J.21, 6303–6311 (2002). ArticleCASPubMedPubMed Central Google Scholar
Boehm, T., Folkman, J., Browder, T. & O'Reilly, M. S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature390, 404–407 (1997). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J.17, 4249–4256 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, N. et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J.18, 4414–4423 (1999). ArticleCASPubMedPubMed Central Google Scholar
Citrin, D. et al. In vivo tumor imaging in mice with near-infrared labeled endostatin. Mol. Can. Ther.3, 481–488 (2004). Reports clear evidence that endostatin targets the tumour vasculature. CAS Google Scholar
Ramchandran, R. et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem. Biophys. Res. Commun.255, 735–739 (1999). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Endostatins derived from collagens XV and XVIII differ in structural and binding properties, tissue distribution and anti-angiogenic activity. J. Mol. Biol.301, 1179–1190 (2000). ArticleCASPubMed Google Scholar
Bilbe, G. et al. Restin: a novel intermediate filament-associated protein highly expressed in the Reed–Sternberg cells of Hodgkin's disease. EMBO J.11, 2103–2113 (1992). ArticleCASPubMedPubMed Central Google Scholar
Gaetzner, S. et al. Endostatin's heparan sulfate-binding site is essential for inhibition of angiogenesis and enhances in situ binding to capillary-like structures in bone explants. Matrix Biol.23, 557–561 (2005). ArticleCASPubMed Google Scholar
Mongiat, M., Sweeney, S., San Antonio, J. D., Fu, J. & Iozzo, R. V. Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem.278, 4238–4249 (2003). The first report of endorepellin as an angiostatic factor. ArticleCASPubMed Google Scholar
Bix, G. et al. Endoprepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through the α2β1 integrin. J. Cell Biol.166, 97–109 (2004). This paper addresses the mechanism of action of endorepellin. ArticleCASPubMedPubMed Central Google Scholar
Miosge, N., Simniok, T., Sprysch, P. & Herken, R. The collagen type XVIII endostatin domain is co-localized with perlecan in basement membranes in vivo. J. Histochem. Cytochem.51, 285–296 (2003). ArticleCASPubMed Google Scholar
Gonzalez, E. M. et al. BMP-1/Tolloid-like metalloproteases process endorepellin, the angiostatic C-terminal fragment of perlecan. J. Biol. Chem.280, 7080–7087 (2005). ArticleCASPubMed Google Scholar
Hohenester, E., Tisi, D., Talts, J. F. & Timpl, R. The crystal structure of a laminin G-like module reveals the molecular basis of α-dystroglycan binding to laminins, perlecan, and agrin. Mol. Cell4, 783–792 (1999). ArticleCASPubMed Google Scholar
Tisi, D., Talts, J. F., Timpl, R. & Hohenester, E. Structure of the C-terminal laminin G-like domain pair of the laminin α2 chain harbouring binding sites for α-dystroglycan and heparin. EMBO J.19, 1432–1440 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wizemann, H. et al. Distinct requirements for heparin and α-dystroglycan binding revealed by structure-based mutagenesis of the laminin α2 LG4–LG5 domain pair. J. Mol. Biol.332, 635–642 (2003). ArticleCASPubMed Google Scholar
Rudenko, G., Hohenester, E. & Muller, Y. A. LG/LNS domains: multiple functions — one business end? Trends Biochem. Sci.26, 363–368 (2001). ArticleCASPubMed Google Scholar
Oda, O. et al. Purification and characterization of perlecan fragment in urine of end-stage renal failure patients. Clin. Chim. Acta255, 119–132 (1996). ArticleCASPubMed Google Scholar
Vuadens, F. et al. Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics3, 1521–1525 (2003). ArticleCASPubMed Google Scholar
Adkins, J. N. et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteom.1, 947–955 (2002). ArticleCAS Google Scholar
Karumanchi, S. A. et al. Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell7, 811–822 (2001). ArticleCASPubMed Google Scholar
Ortega, N. & Werb, Z. New functional roles for non-collagenous domains of basement membrane collagens. J. Cell Sci.115, 4201–4214 (2002). ArticleCASPubMed Google Scholar
Sottile, J. Regulation of angiogenesis by extracellular matrix. Biochim. Biophys. Acta1654, 13–22 (2004). CASPubMed Google Scholar
Wickström, S. A., Alitalo, K. & Keski-Oja, J. Endostatin associates with integrin α5β1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res.62, 5580–5589 (2002). PubMed Google Scholar
Wickström, S. A., Alitalo, K. & Keski-Oja, J. Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of RhoA activity. J. Biol. Chem.278, 37895–37901 (2003). References 96 and 97 provide convincing evidence for the binding of endostatin to α5β1integrin and elucidate its mechanism of action. ArticlePubMed Google Scholar
Sudhakar, A. et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc. Natl Acad. Sci. USA100, 4766–4771 (2003). ArticleCASPubMedPubMed Central Google Scholar
Guo, W. & Giancotti, F. G. Integrin signalling during tumour progression. Nature Rev. Mol. Cell Biol.5, 816–826 (2004). Excellent review on integrin signalling and cancer. ArticleCAS Google Scholar
Abdollahi, A. H. P. et al. Endostatin's antioangiogenic signaling network. Mol. Cell13, 649–663 (2004). ArticleCASPubMed Google Scholar
Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1 . Cell101, 47–56 (2000). ArticleCASPubMed Google Scholar
Whelan, M. C. & Senger, D. R. Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J. Biol. Chem.278, 327–334 (2003). ArticleCASPubMed Google Scholar
Sweeney, S. M. et al. Angiogenesis in collagen I requires α2β1 ligation of a GFP*GER sequence and possible p38 MAPK activation and focal adhesion disassembly. J. Biol. Chem.278, 30516–30524 (2003). References 102 and 103 investigate the role of collagen in inducing vascular morphogenesis. ArticleCASPubMed Google Scholar
Keezer, S. M. et al. Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin. Cancer Res.63, 6405–6412 (2003). CASPubMed Google Scholar
Guex, N. & Peitsch, M. C. SWISS-MODEL and Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis18, 2714–2723 (1997). ArticleCASPubMed Google Scholar
Aricescu, A. R., McKinnell, I. W., Halfter, W. & Stoker, A. W. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase σ. Mol. Cell Biol.22, 1881–1892 (2002). ArticleCASPubMedPubMed Central Google Scholar
van Horssen, J. et al. Collagen XVIII: a novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer's disease brains. Brain Pathol.12, 456–462 (2002). ArticleCASPubMed Google Scholar
Bengtsson, E. et al. The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J. Biol. Chem.277, 15061–15068 (2002). ArticleCASPubMed Google Scholar
Knox, S., Merry, C., Stringer, S., Melrose, J. & Whitelock, J. Not all perlecans are created equal. Interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J. Biol. Chem.277, 14657–14665 (2002). ArticleCASPubMed Google Scholar
Xu, Y., Liu, Y. J. & Yu, Q. Angiopoietin-3 is tethered on the cell surface via heparan sulfate proteoglycans. J. Biol. Chem.279, 41179–41188 (2004). ArticleCASPubMed Google Scholar
Tiedemann, K. et al. Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J. Biol. Chem.280, 11404–11412 (2005). ArticleCASPubMed Google Scholar
Hummel, S. et al. Extracellular matrices of the avian ovarian follicle. Molecular characterization of chicken perlecan. J. Biol. Chem.279, 23486–23494 (2004). ArticleCASPubMed Google Scholar
Mongiat, M. et al. The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J. Biol. Chem.275, 7095–7100 (2000). ArticleCASPubMed Google Scholar
Göhring, W., Sasaki, T., Heldin, C. H. & Timpl, R. Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur. J. Biochem.255, 60–66 (1998). ArticlePubMed Google Scholar
Hopf, M., Göhring, W., Kohfeldt, E., Yamada, Y. & Timpl, R. Recombinant domain IV of perlecan binds to nidogens, laminin–nidogen complex, fibronectin, fibulin-2 and heparin. Eur. J. Biochem.259, 917–925 (1999). ArticleCASPubMed Google Scholar
Brown, J. C., Sasaki, T., Göhring, W., Yamada, E. & Timpl, R. The C-terminal domain V of perlecan promotes β1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur. J. Biochem.250, 39–46 (1997). ArticleCASPubMed Google Scholar
Talts, J. F., Andac, Z., Göhring, W., Brancaccio, A. & Timpl, R. Binding of the G domains of laminin α1 and α2 chains and perlecan to heparin, sulfatides, α-dystroglycan and several extracellular matrix proteins. EMBO J.18, 863–870 (1999). ArticleCASPubMedPubMed Central Google Scholar
Mongiat, M. et al. Perlecan protein core interacts with extracellular matrix protein 1 (ECM1), a glycoprotein involved in bone formation and angiogenesis. J. Biol. Chem.278, 17491–17499 (2003). ArticleCASPubMed Google Scholar
Gonzalez, E. M., Mongiat, M., Slater, S. J., Baffa, R. & Iozzo, R. V. A novel interaction between perlecan protein core and progranulin: Potential effects on tumor growth. J. Biol. Chem.278, 38113–38116 (2003). ArticleCASPubMed Google Scholar