Lipid droplets: a unified view of a dynamic organelle (original) (raw)
Murphy, D. J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res.40, 325–438 (2001). ArticleCAS Google Scholar
Waltermann, M. & Steinbuchel, A. Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol.187, 3607–3619 (2005). Article Google Scholar
Martin, S. & Parton, R. G. Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol.16, 163–174 (2005). ArticleCAS Google Scholar
Imanishi, Y., Gerke, V. & Palczewski, K. Retinosomes: new insights into intracellular managing of hydrophobic substances in lipid bodies. J. Cell Biol.166, 447–453 (2004). ArticleCAS Google Scholar
Gross, S. P., Guo, Y., Martinez, J. E. & Welte, M. A. A determinant for directionality of organelle transport in Drosophila embryos. Curr. Biol.13, 1660–1668 (2003). ArticleCAS Google Scholar
Valetti, C. et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell10, 4107–4120 (1999). ArticleCAS Google Scholar
Targett-Adams, P. et al. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J. Biol. Chem.278, 15998–16007 (2003). ArticleCAS Google Scholar
Pol, A. et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell15, 99–110 (2004). ArticleCAS Google Scholar
Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R. & Fujimoto, T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem.277, 44507–44512 (2002). ArticleCAS Google Scholar
Blanchette-Mackie, E. J. et al. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res.36, 1211–1226 (1995). CASPubMed Google Scholar
Robenek, H. et al. Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J. Biol. Chem.280, 26330–26338 (2005). ArticleCAS Google Scholar
Liu, P. et al. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem.279, 3787–3792 (2004). ArticleCAS Google Scholar
Brasaemle, D. L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem.279, 46835–46842 (2004). ArticleCAS Google Scholar
Fujimoto, Y. et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta1644, 47–59 (2004). ArticleCAS Google Scholar
Umlauf, E. et al. Association of stomatin with lipid bodies. J. Biol. Chem.279, 23699–23709 (2004). ArticleCAS Google Scholar
Tansey, J. T., Sztalryd, C., Hlavin, E. M., Kimmel, A. R. & Londos, C. The central role of perilipin A in lipid metabolism and adipocyte lipolysis. IUBMB Life56, 379–385 (2004). ArticleCAS Google Scholar
Londos, C., Brasaemle, D. L., Schultz, C. J., Segrest, J. P. & Kimmel, A. R. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin. Cell Dev. Biol.10, 51–58 (1999). ArticleCAS Google Scholar
Miura, S. et al. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J. Biol. Chem.277, 32253–32257 (2002). ArticleCAS Google Scholar
Brasaemle, D. L. et al. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J. Biol. Chem.275, 38486–38493 (2000). ArticleCAS Google Scholar
Tansey, J. T. et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc. Natl Acad. Sci. USA98, 6494–6499 (2001). ArticleCAS Google Scholar
Martinez-Botas, J. et al. Absence of perilipin results in leanness and reverses obesity in Lepr db/db mice. Nature Genet.26, 474–479 (2000). ArticleCAS Google Scholar
Sztalryd, C. et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol.161, 1093–1103 (2003). ArticleCAS Google Scholar
Londos, C., Sztalryd, C., Tansey, J. T. & Kimmel, A. R. Role of PAT proteins in lipid metabolism. Biochimie87, 45–49 (2005). ArticleCAS Google Scholar
Moore, H. P., Silver, R. B., Mottillo, E. P., Bernlohr, D. A. & Granneman, J. G. Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. J. Biol. Chem.280, 43109–43120 (2005). ArticleCAS Google Scholar
Tansey, J. T. et al. Functional studies on native and mutated forms of perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols. J. Biol. Chem.278, 8401–8406 (2003). ArticleCAS Google Scholar
Serrero, G., Frolov, A., Schroeder, F., Tanaka, K. & Gelhaar, L. Adipose differentiation related protein: expression, purification of recombinant protein in Escherichia coli and characterization of its fatty acid binding properties. Biochim. Biophys. Acta1488, 245–254 (2000). ArticleCAS Google Scholar
Atshaves, B. P. et al. Sterol carrier protein-2 expression modulates protein and lipid composition of lipid droplets. J. Biol. Chem.276, 25324–25335 (2001). ArticleCAS Google Scholar
Imamura, M. et al. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am. J. Physiol. Endocrinol. Metab.283, E775–E783 (2002). ArticleCAS Google Scholar
Gao, J. & Serrero, G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J. Biol. Chem.274, 16825–16830 (1999). ArticleCAS Google Scholar
Nakamura, N. et al. ADRP is dissociated from lipid droplets by ARF1-dependent mechanism. Biochem. Biophys. Res. Commun.322, 957–965 (2004). ArticleCAS Google Scholar
Jenkins, G. M. & Frohman, M. A. Phospholipase D: a lipid centric review. Cell. Mol. Life Sci.62, 2305–2316 (2005). ArticleCAS Google Scholar
Nakamura, N., Banno, Y. & Tamiya-Koizumi, K. Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem. Biophys. Res. Commun.335, 117–123 (2005). ArticleCAS Google Scholar
Marchesan, D. et al. A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, and vimentin in a cell-free system. J. Biol. Chem.278, 27293–27300 (2003). ArticleCAS Google Scholar
Bostrom, P. et al. Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler. Thromb. Vasc. Biol.25, 1945–1951 (2005). Article Google Scholar
Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol.2, 107–117 (2001). ArticleCAS Google Scholar
Ozeki, S. et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci.118, 2601–2611 (2005). ArticleCAS Google Scholar
Martin, S., Driessen, K., Nixon, S. J., Zerial, M. & Parton, R. G. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem.280, 42325–42335 (2005). ArticleCAS Google Scholar
van Manen, H. J., Kraan, Y. M., Roos, D. & Otto, C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc. Natl Acad. Sci. USA102, 10159–10164 (2005). ArticleCAS Google Scholar
Levine, T. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol.14, 483–490 (2004). ArticleCAS Google Scholar
Parton, R. G. Caveolae and caveolins. Curr. Opin. Cell Biol.8, 542–548 (1996). ArticleCAS Google Scholar
Pol, A. et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol.152, 1057–1070 (2001). ArticleCAS Google Scholar
Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol.1, 98–105 (1999). ArticleCAS Google Scholar
Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K. & Nomura, R. Caveolin-2 is targeted to lipid droplets, a new 'membrane domain' in the cell. J. Cell Biol.152, 1079–1085 (2001). ArticleCAS Google Scholar
Trigatti, B. L., Anderson, R. G. & Gerber, G. E. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun.255, 34–39 (1999). ArticleCAS Google Scholar
Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA92, 10339–10343 (1995). ArticleCAS Google Scholar
Sharma, D. K. et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell15, 3114–3122 (2004). ArticleCAS Google Scholar
Ost, A., Ortegren, U., Gustavsson, J., Nystrom, F. H. & Stralfors, P. Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J. Biol. Chem.280, 5–8 (2005). Article Google Scholar
Cohen, A. W. et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes53, 1261–1270 (2004). ArticleCAS Google Scholar
Zechner, R., Strauss, J. G., Haemmerle, G., Lass, A. & Zimmermann, R. Lipolysis: pathway under construction. Curr. Opin. Lipidol.16, 333–340 (2005). ArticleCAS Google Scholar
Wang, S. P. et al. The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes. Res.9, 119–128 (2001). ArticleCAS Google Scholar
Osuga, J. et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc. Natl Acad. Sci. USA97, 787–792 (2000). ArticleCAS Google Scholar
Haemmerle, G. et al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem.277, 4806–4815 (2002). ArticleCAS Google Scholar
Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science306, 1383–1386 (2004). ArticleCAS Google Scholar
Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H. & Sul, H. S. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J. Biol. Chem.279, 47066–47075 (2004). ArticleCAS Google Scholar
Jenkins, C. M. et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem.279, 48968–48975 (2004). ArticleCAS Google Scholar
Hope, R. G., Murphy, D. J. & McLauchlan, J. The domains required to direct core proteins of hepatitis C virus and GB virus-B to lipid droplets share common features with plant oleosin proteins. J. Biol. Chem.277, 4261–4270 (2002). ArticleCAS Google Scholar
Ting, J. T., Balsamo, R. A., Ratnayake, C. & Huang, A. H. Oleosin of plant seed oil bodies is correctly targeted to the lipid bodies in transformed yeast. J. Biol. Chem.272, 3699–3706 (1997). ArticleCAS Google Scholar
Shimano, H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res.40, 439–452 (2001). ArticleCAS Google Scholar
Li, Y. et al. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J. Biol. Chem.279, 37030–37039 (2004). ArticleCAS Google Scholar
Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nature Cell Biol.5, 781–792 (2003). ArticleCAS Google Scholar
Welte, M. A. et al. Regulation of lipid-droplet transport by the perilipin homolog LSD2. Curr. Biol.15, 1266–1275 (2005). ArticleCAS Google Scholar
Gronke, S. et al. Control of fat storage by a Drosophila PAT domain protein. Curr. Biol.13, 603–606 (2003). ArticleCAS Google Scholar