Palade, G.E. Fine structure of blood capillaries. J. Appl. Phys.24, 1424 (1953). Google Scholar
Yamada, E. The fine structures of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol.1, 445–458 (1955). CASPubMedPubMed Central Google Scholar
Stan, R.V. Structure of caveolae. Biochim. Biophys. Acta1746, 334–348 (2005). CASPubMed Google Scholar
Stan, R.V., Tkachenko, E. & Niesman, I.R. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol. Biol. Cell15, 3615–3630 (2004). CASPubMedPubMed Central Google Scholar
Lisanti, M.P. et al. Caveolae, transmembrane signalling and cellular transformation. Mol. Membr. Biol.12, 121–124 (1995). CASPubMed Google Scholar
Kurzchalia, T.V. & Parton, R.G. Membrane microdomains and caveolae. Curr. Opin. Cell Biol.11, 424–431 (1999). CASPubMed Google Scholar
Williams, T.M. & Lisanti, M.P. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol.288, C494–C506 (2005). CASPubMed Google Scholar
Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol.3, 473–483 (2001). CASPubMed Google Scholar
Shin, J.S., Gao, Z. & Abraham, S.N. Involvement of cellular caveolae in bacterial entry into mast cells. Science289, 785–788 (2000). CASPubMed Google Scholar
Fra, A.M., Williamson, E., Simons, K. & Parton, R.G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl Acad. Sci. USA92, 8655–8659 (1995). CASPubMedPubMed Central Google Scholar
Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in Caveolin-1 gene-disrupted mice. Science293, 2449–2452 (2001). CASPubMed Google Scholar
Galbiati, F. et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin–glycoprotein complex, and t-tubule abnormalities. J. Biol. Chem.276, 21425–21433 (2001). CASPubMed Google Scholar
Tang, Z. et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem.271, 2255–2261 (1996). CASPubMed Google Scholar
Way, M. & Parton, R.G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett.376, 108–112 (1995). CASPubMed Google Scholar
Razani, B. et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol. Cell. Biol.22, 2329–2344 (2002). CASPubMedPubMed Central Google Scholar
Sowa, G., Pypaert, M., Fulton, D. & Sessa, W.C. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc. Natl Acad. Sci. USA100, 6511–6516 (2003). CASPubMedPubMed Central Google Scholar
Lahtinen, U., Honsho, M., Parton, R.G., Simons, K. & Verkade, P. Involvement of caveolin-2 in caveolar biogenesis in MDCK cells. FEBS Lett.538, 85–88 (2003). CASPubMed Google Scholar
Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA92, 10339–10343 (1995). CASPubMedPubMed Central Google Scholar
Dietzen, D.J., Hastings, W.R. & Lublin, D.M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem.270, 6838–6842 (1995). CASPubMed Google Scholar
Rothberg, K.G. et al. Caveolin, a protein component of caveolae membrane coats. Cell68, 673–682 (1992). CASPubMed Google Scholar
Pelkmans, L. & Zerial, M. Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature436, 128–133 (2005). CASPubMed Google Scholar
Ortegren, U. et al. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem.271, 2028–2036 (2004). Quantification of lipid levels within caveolae shows that glycosphingolipids and cholesterol are concentrated more within caveolae compared with the surrounding plasma membrane. Higher packing of total lipids is observed in caveolae compared with the surrounding plasma membrane. PubMed Google Scholar
Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci.117, 5955–5964 (2004). CASPubMed Google Scholar
Simons, K. & Vaz, W.L. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct.33, 269–295 (2004). An extensive review of the data supporting lipid-based microdomain formation in model systems and in cell membranes. CASPubMed Google Scholar
Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol.7, 456–462 (2006). CAS Google Scholar
Lipardi, C. et al. Caveolin transfection results in caveolae formation but not apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins in epithelial cells. J. Cell Biol.140, 617–626 (1998). CASPubMedPubMed Central Google Scholar
Parton, R.G., Hanzal-Bayer, M. & Hancock, J.F. Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J. Cell Sci.119, 787–796 (2006). Summary of current data on caveola biogenesis and a proposed model for the formation of caveolae through caveolin–lipid interactions. CASPubMed Google Scholar
Monier, S. et al. VIP21–caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell6, 911–927 (1995). CASPubMedPubMed Central Google Scholar
Monier, S., Dietzen, D.J., Hastings, W.R., Lublin, D.M. & Kurzchalia, T.V. Oligomerization of VIP21–caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett.388, 143–149 (1996). CASPubMed Google Scholar
Pol, A. et al. Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell16, 2091–2105 (2005). CASPubMedPubMed Central Google Scholar
Cheng, Z.J. et al. Distinct mechanisms of clathrin-independent cndocytosis have unique sphingolipid requirements. Mol. Biol. Cell17, 3197–3210 (2006). CASPubMedPubMed Central Google Scholar
Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol.170, 769–779 (2005). Real-time microscopy and cell-fusion experiments show that caveolae are remarkably stable with evidence for formation of 'caveolae' in the Golgi complex that then fuse directly with the plasma membrane. CASPubMedPubMed Central Google Scholar
Bauer, M. & Pelkmans, L. A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett.580, 5559–5564 (2006). CASPubMed Google Scholar
Choudhury, A., Marks, D.L., Proctor, K.M., Gould, G.W. & Pagano, R.E. Regulation of caveolar endocytosis by syntaxin 6-dependent delivery of membrane components to the cell surface. Nature Cell Biol.8, 317–328 (2006). Identifies syntaxin-6 as a regulator of CAV1, GPI-anchored proteins, and GM1 transport from Golgi to the plasma membrane and provides insights into the coupling of exocytosis and endocytosis of lipid-raft components. CASPubMed Google Scholar
Manninen, A. et al. Caveolin-1 is not essential for biosynthetic apical membrane transport. Mol. Cell. Biol.25, 10087–10096 (2005). CASPubMedPubMed Central Google Scholar
Hernandez-Deviez, D.J. et al. Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum. Mol. Genet.15, 129–142 (2006). CASPubMed Google Scholar
Wyse, B.D. et al. Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. J. Biol. Chem.278, 23738–23746 (2003). CASPubMed Google Scholar
Cohen, A.W. et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol.285, C222–C235 (2003). CASPubMed Google Scholar
Brazer, S.C., Singh, B.B., Liu, X., Swaim, W. & Ambudkar, I.S. Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J. Biol. Chem.278, 27208–27215 (2003). CASPubMed Google Scholar
Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol.7, 179–185 (2005). CASPubMed Google Scholar
Verkade, P., Harder, T., Lafont, F. & Simons, K. Induction of caveolae in the apical plasma membrane of Madin–Darby canine kidney cells. J. Cell Biol.148, 727–739 (2000). CASPubMedPubMed Central Google Scholar
Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell118, 767–780 (2004). CASPubMed Google Scholar
Thomsen, P., Roepstorff, K., Stahlhut, M. & van Deurs, B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell13, 238–250 (2002). CASPubMedPubMed Central Google Scholar
Kirkham, M. et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J. Cell Biol.168, 465–476 (2005). CASPubMedPubMed Central Google Scholar
Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science296, 535–539 (2002). CASPubMed Google Scholar
Sharma, D.K. et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell15, 3114–3122 (2004). CASPubMedPubMed Central Google Scholar
Oh, P., McIntosh, D.P. & Schnitzer, J.E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol.141, 101–114 (1998). CASPubMedPubMed Central Google Scholar
Henley, J.R., Krueger, E.W., Oswald, B.J. & McNiven, M.A. Dynamin-mediated internalization of caveolae. J. Cell Biol.141, 85–99 (1998). CASPubMedPubMed Central Google Scholar
Yao, Q. et al. Caveolin-1 interacts directly with dynamin-2. J. Mol. Biol.348, 491–501 (2005). CASPubMed Google Scholar
Damm, E.M. et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol.168, 477–488 (2005). CASPubMedPubMed Central Google Scholar
Kirkham, M. & Parton, R.G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta1745, 273–286 (2005). CASPubMed Google Scholar
Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature436, 78–86 (2005). A high-throughput screen of kinases involved in endocytosis provides fascinating insights into the complex interplay between endocytosis and other cellular processes, such as cell adhesion and cell division. CASPubMed Google Scholar
Sharma, D.K. et al. The glycosphingolipid, lactosylceramide, regulates β1-integrin clustering and endocytosis. Cancer Res.65, 8233–8241 (2005). Evidence for glycosphingolipid-stimulated β1-integrin internalization through a caveolae-mediated pathway. CASPubMed Google Scholar
Sottile, J. & Chandler, J. Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol. Biol. Cell16, 757–768 (2005). CASPubMedPubMed Central Google Scholar
del Pozo, M.A. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biol.7, 901–908 (2005). Demonstrates striking internalization of lipid-raft components upon cell detachment from the substratum through a phospho-CAV1-dependent pathway. CASPubMed Google Scholar
Parton, R.G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem.42, 155–166 (1994). CASPubMed Google Scholar
Nichols, B.J. GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr. Biol.13, 686–690 (2003). CASPubMed Google Scholar
Watarai, M., Makino, S., Fujii, Y., Okamoto, K. & Shirahata, T. Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication. Cell Microbiol.4, 341–355 (2002). CASPubMed Google Scholar
Minshall, R.D. et al. Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway. J. Cell Biol.150, 1057–1070 (2000). CASPubMedPubMed Central Google Scholar
Schubert, W. et al. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J. Biol. Chem.276, 48619–48622 (2001). CASPubMed Google Scholar
Miyawaki-Shimizu, K. et al. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am. J. Physiol. Lung Cell. Mol. Physiol.290, L405–L413 (2006). siRNA-mediated downregulation of CAV1in vivocauses a loss of endothelial caveolae and an increase in vascular hyperpermeability to albumin. Ultrastructural studies showed dilation of interendothelial junctions. CASPubMed Google Scholar
Rosengren, B.I. et al. Transvascular protein transport in mice lacking endothelial caveolae. Am. J. Physiol. Heart Circ. Physiol.291, H1371–H1377 (2006). Evidence for a passive porous pathway for transport of albumin across the endotheliumin vivoin bothCav1-knockout and wild-type mice, arguing against caveolae as a quantitatively important transport route. CASPubMed Google Scholar
Schubert, W. et al. Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J. Biol. Chem.277, 40091–40098 (2002). CASPubMed Google Scholar
Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA102, 2760–2765 (2005). CASPubMedPubMed Central Google Scholar
Di Guglielmo, G.M., Le Roy, C., Goodfellow, A.F. & Wrana, J.L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biol.5, 410–421 (2003). CASPubMed Google Scholar
Anderson, H.A., Chen, Y. & Norkin, L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell7, 1825–1834 (1996). CASPubMedPubMed Central Google Scholar
Stang, E., Kartenbeck, J. & Parton, R.G. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell8, 47–57 (1997). CASPubMedPubMed Central Google Scholar
Sukumaran, S.K., Quon, M.J. & Prasadarao, N.V. Escherichia coli K1 internalization via caveolae requires caveolin-1 and protein kinase Cα interaction in human brain microvascular endothelial cells. J. Biol. Chem.277, 50716–50724 (2002). CASPubMed Google Scholar
Zaas, D.W., Duncan, M.J., Li, G., Wright, J.R. & Abraham, S.N. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J. Biol. Chem.280, 4864–4872 (2005). CASPubMed Google Scholar
Tamai, R., Asai, Y. & Ogawa, T. Requirement for intercellular adhesion molecule 1 and caveolae in invasion of human oral epithelial cells by Porphyromonas gingivalis. Infect. Immun.73, 6290–6298 (2005). CASPubMedPubMed Central Google Scholar
Rohde, M., Muller, E., Chhatwal, G.S. & Talay, S.R. Host cell caveolae act as an entry-port for group A streptococci. Cell. Microbiol.5, 323–342 (2003). CASPubMed Google Scholar
Millan, J. et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nature Cell Biol.8, 113–123 (2006). CASPubMed Google Scholar
Muro, S. et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci.116, 1599–1609 (2003). CASPubMed Google Scholar
Li, J. et al. Impaired phagocytosis in caveolin-1 deficient macrophages. Cell Cycle4, 1599–1607 (2005). CASPubMed Google Scholar
Beardsley, A. et al. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J. Biol. Chem.280, 3541–3547 (2005). Provides evidence for a functional role for CAV1 in endothelial-cell motility. In actively migrating cells, caveolae are localized at the rear of the cell and excluded from the leading edge. CASPubMed Google Scholar
Souto, R.P. et al. Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. J. Biol. Chem.278, 18321–18329 (2003). CASPubMed Google Scholar
Li, S., Couet, J. & Lisanti, M.P. Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem.271, 29182–29190 (1996). CASPubMed Google Scholar
Schlegel, A., Schwab, R.B., Scherer, P.E. & Lisanti, M.P. A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. J. Biol. Chem.274, 22660–22667 (1999). CASPubMed Google Scholar
Epand, R.M., Sayer, B.G. & Epand, R.F. Caveolin scaffolding region and cholesterol-rich domains in membranes. J. Mol. Biol.345, 339–350 (2005). CASPubMed Google Scholar
Arbuzova, A. et al. Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry39, 10330–10339 (2000). CASPubMed Google Scholar
Gonzalez, E., Nagiel, A., Lin, A.J., Golan, D.E. & Michel, T. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J. Biol. Chem.279, 40659–40669 (2004). CASPubMed Google Scholar
Bernatchez, P.N. et al. Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proc. Natl Acad. Sci. USA102, 761–766 (2005). CASPubMedPubMed Central Google Scholar
Wary, K.K., Mariotti, A., Zurzolo, C. & Giancotti, F.G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell94, 625–634 (1998). CASPubMed Google Scholar
Bauer, P.M. et al. Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc. Natl Acad. Sci. USA102, 204–209 (2005). Transgenic overexpression of CAV1 impairs eNOS activation and decreases VEGF-stimulated vascular permeability. CAV1 overexpression reduced VEGF-mediated angiogenesis after experimentally induced tissue ischaemia. CASPubMed Google Scholar
Bucci, M. et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Med.6, 1362–1367 (2000). CASPubMed Google Scholar
Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem.272, 25437–25440 (1997). CASPubMed Google Scholar
Reddy, M.A. et al. Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J. Biol. Chem.281, 13685–13693 (2006). CASPubMed Google Scholar
Swaney, J.S. et al. Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. J. Biol. Chem.281, 17173–17179 (2006). CASPubMed Google Scholar
Cheng, X. & Jaggar, J.H. Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol.290, H2309–H2319 (2006). CASPubMed Google Scholar
Wang, X.L. et al. Caveolae targeting and regulation of large conductance Ca2+-activated K+ channels in vascular endothelial cells. J. Biol. Chem.280, 11656–11664 (2005). CASPubMed Google Scholar
Trigatti, B.L., Anderson, R.G. & Gerber, G.E. Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun.255, 34–39 (1999). CASPubMed Google Scholar
Martin, S. & Parton, R.G. Lipid droplets: a unified view of a dynamic organelle. Nature Rev. Mol. Cell Biol.7, 373–378 (2006). CAS Google Scholar
Murphy, D.J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res.40, 325–438 (2001). CASPubMed Google Scholar
Martin, S. & Parton, R.G. Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol.16, 163–174 (2005). CASPubMed Google Scholar
Brasaemle, D.L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem.279, 46835–46842 (2004). CASPubMed Google Scholar
Pol, A. et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell15, 99–110 (2004). CASPubMedPubMed Central Google Scholar
Meshulam, T., Simard, J.R., Wharton, J., Hamilton, J.A. & Pilch, P.F. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry45, 2882–2893 (2006). CASPubMed Google Scholar
Fu, Y. et al. Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. J. Biol. Chem.279, 14140–14146 (2004). CASPubMed Google Scholar
Fielding, C.J. & Fielding, P.E. Caveolae and intracellular trafficking of cholesterol. Adv. Drug Deliv. Rev.49, 251–264 (2001). CASPubMed Google Scholar
Frank, P.G. et al. Caveolin-1 and the regulation of cellular cholesterol homeostasis. Am. J. Physiol. Heart Circ. Physiol.291, H677–H686 (2006). CASPubMed Google Scholar
Pol, A. et al. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol.152, 1057–1070 (2001). CASPubMedPubMed Central Google Scholar
Fernandez, M.A. et al. Caveolin-1 is essential for liver regeneration. Science313, 1628–1632 (2006). CASPubMed Google Scholar
Razani, B. et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem.277, 8635–8647 (2002). CASPubMed Google Scholar
Le Lay, S. et al. Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic7, 549–561 (2006). CASPubMed Google Scholar
Landh, T. From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett.369, 13–17 (1995). CASPubMed Google Scholar
Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol.7, 265–275 (2006). CAS Google Scholar
Rizzo, V., Morton, C., DePaola, N., Schnitzer, J.E. & Davies, P.F. Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am. J. Physiol. Heart Circ. Physiol.285, H1720–H1729 (2003). In cultured endothelial cells, chronic exposure to shear stress causes increased surface localization of CAV1 and caveolae; this effect is linked to increased mechanosensitivity and activation of specific signalling pathways. CASPubMed Google Scholar
Boyd, N.L. et al. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am. J. Physiol. Heart Circ. Physiol.285, H1113–H1122 (2003). CASPubMed Google Scholar
Radel, C. & Rizzo, V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am. J. Physiol. Heart Circ. Physiol.288, H936–H945 (2005). Cultured bovine aortic endothelial cells subjected to shear stress show rapid Tyr14 phosphorylation of CAV1, which is dependent on β1-integrin activation, supporting a role for caveolae in mechanosensing. CASPubMed Google Scholar
Yu, J. et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest.116, 1284–1291 (2006). Endothelial expression of CAV1 inCav1-null mice shows that CAV1 is required for eNOS activation in response to endothelial flow; these data provide further support for a mechanosensing role of caveolae. CASPubMedPubMed Central Google Scholar
Rudic, R.D. et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest.101, 731–736 (1998). CASPubMedPubMed Central Google Scholar
Sedding, D.G. et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res.96, 635–642 (2005). Smooth-muscle cells subjected to cyclic stretch show rapid redistribution of CAV1 to focal contacts. CAV1 is required for stretch-triggered cell-cycle progression. CASPubMed Google Scholar
Oh, P. & Schnitzer, J.E. Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell12, 685–698 (2001). CASPubMedPubMed Central Google Scholar
Czarny, M. & Schnitzer, J.E. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am. J. Physiol. Heart. Circ Physiol.287, H1344–H1352 (2004). CASPubMed Google Scholar
Alenghat, F.J. & Ingber, D.E. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE2002, PE6 (2002). PubMed Google Scholar
Lundbaek, J.A. et al. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol.123, 599–621 (2004). CASPubMedPubMed Central Google Scholar
Lundbaek, J.A., Andersen, O.S., Werge, T. & Nielsen, C. Cholesterol-induced protein sorting: an analysis of energetic feasibility. Biophys. J.84, 2080–2089 (2003). CASPubMedPubMed Central Google Scholar
Sens, P. & Turner, M.S. Budded membrane microdomains as tension regulators. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73, 031918 (2006). PubMed Google Scholar
Koleske, A.J., Baltimore, D. & Lisanti, M.P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA92, 1381–1385 (1995). CASPubMedPubMed Central Google Scholar
Lee, S.W., Reimer, C.L., Oh, P., Campbell, D.B. & Schnitzer, J.E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene16, 1391–1397 (1998). CASPubMed Google Scholar
Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res.61, 2361–2364 (2001). CASPubMed Google Scholar
Williams, T.M. et al. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol. Biol. Cell14, 1027–1042 (2003). CASPubMedPubMed Central Google Scholar
Capozza, F. et al. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol.162, 2029–2039 (2003). CASPubMedPubMed Central Google Scholar
Li, T. et al. Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor α-positive status. Am. J. Pathol.168, 1998–2013 (2006). CASPubMedPubMed Central Google Scholar
Sunaga, N. et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res.64, 4277–4285 (2004). CASPubMed Google Scholar
Thompson, T.C., Timme, T.L., Li, L. & Goltsov, A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis4, 233–237 (1999). CASPubMed Google Scholar
Yang, G., Timme, T.L., Frolov, A., Wheeler, T.M. & Thompson, T.C. Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer103, 1186–1194 (2005). CASPubMed Google Scholar
Vorgerd, M. et al. A sporadic case of rippling muscle disease caused by a de novo caveolin-3 mutation. Neurology57, 2273–2277 (2001). CASPubMed Google Scholar
McNally, E.M. et al. Caveolin-3 in muscular dystrophy. Hum. Mol. Genet.7, 871–877 (1998). CASPubMed Google Scholar
Woodman, S.E., Sotgia, F., Galbiati, F., Minetti, C. & Lisanti, M.P. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology62, 538–543 (2004). CASPubMed Google Scholar
Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genet.18, 365–368 (1998). CASPubMed Google Scholar
Galbiati, F., Volonte, D., Minetti, C., Chu, J.B. & Lisanti, M.P. Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the golgi complex. J. Biol. Chem.274, 25632–25641 (1999). CASPubMed Google Scholar
Matsuda, C. et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet.10, 1761–1766 (2001). CASPubMed Google Scholar
Parton, R.G., Molero, J.C., Floetenmeyer, M., Green, K.M. & James, D.E. Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J. Biol. Chem.277, 46769–46778 (2002). CASPubMed Google Scholar
Foster, L.J., De Hoog, C.L. & Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl Acad. Sci. USA100, 5813–5818 (2003). CASPubMedPubMed Central Google Scholar
Nixon, S.J. et al. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Hum. Mol. Genet.14, 1727–1743 (2005). CASPubMed Google Scholar
Ohsawa, Y. et al. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum. Mol. Genet.13, 151–157 (2004). CASPubMed Google Scholar
Sharma, D.K. et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem.278, 7564–7572 (2003). CASPubMed Google Scholar