Marsh, M. & Helenius, A. Virus entry: open sesame. Cell124, 729–740 (2006). Cell biology studies, live-cell imaging and systems biology show that many of the multiple and subtly different pathways that animal viruses use to enter host cells require specific lipids. CASPubMedPubMed Central Google Scholar
Marsh, D. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J.93, 3884–3899 (2007). CASPubMedPubMed Central Google Scholar
Dowhan, W. & Bogdanov, M. in Biochemistry of Lipids, Lipoproteins and Membranes Vol. 36 (eds Vance, D. E. & Vance, J. E.) 1–35 (Elsevier, Amsterdam, 2002). Google Scholar
van Meer, G. & Lisman, Q. Sphingolipid transport: rafts and translocators. J. Biol. Chem.277, 25855–25858 (2002). CASPubMed Google Scholar
Huang, J. & Feigenson, G. W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J.76, 2142–2157 (1999). The interactions of cholesterol with membrane lipid lead to abrupt jumps in cholesterol chemical potential because of the hydrophobic interaction, which forces phospholipid headgroups to shield cholesterol from water, as described here by the umbrella model. CASPubMedPubMed Central Google Scholar
Ali, M. R., Cheng, K. H. & Huang, J. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-_sn_-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. Biochemistry45, 12629–12638 (2006). CASPubMed Google Scholar
Meyer zu Heringdorf, D. & Jakobs, K. H. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim. Biophys. Acta1768, 923–940 (2007). CASPubMed Google Scholar
Fernandis, A. Z. & Wenk, M. R. Membrane lipids as signaling molecules. Curr. Opin. Lipidol.18, 121–128 (2007). CASPubMed Google Scholar
Kolesnick, R. & Hannun, Y. A. Ceramide and apoptosis. Trends Biochem. Sci.24, 224–225 (1999). CASPubMed Google Scholar
Tepper, A. D. et al. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J. Cell Biol.150, 155–164 (2000). CASPubMedPubMed Central Google Scholar
Megha, Sawatzki, P., Kolter, T., Bittman, R. & London, E. Effect of ceramide _N_-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochim. Biophys. Acta1768, 2205–2212 (2007). CASPubMedPubMed Central Google Scholar
Bell, R. M., Ballas, L. M. & Coleman, R. A. Lipid topogenesis. J. Lipid Res.22, 391–403 (1981). CASPubMed Google Scholar
Sprong, H. et al. UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J. Biol. Chem.273, 25880–25888 (1998). CASPubMed Google Scholar
Rusinol, A. E., Cui, Z., Chen, M. H. & Vance, J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J. Biol. Chem.269, 27494–27502 (1994). Provides evidence for stable physical associations between the ER and mitochondria, and also identifies biochemical properties of this compartment that are distinct from the individual organelles. CASPubMed Google Scholar
Pichler, H. et al. A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur. J. Biochem.268, 2351–2361 (2001). CASPubMed Google Scholar
Futerman, A. H. & Riezman, H. The ins and outs of sphingolipid synthesis. Trends Cell Biol.15, 312–318 (2005). CASPubMed Google Scholar
Henneberry, A. L., Wright, M. M. & McMaster, C. R. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell13, 3148–3161 (2002). CASPubMedPubMed Central Google Scholar
Voelker, D. R. Bridging gaps in phospholipid transport. Trends Biochem. Sci.30, 396–404 (2005). Summarizes biochemical and genetic elements of non-vesicular phospholipid transport with highlighted emphasis on PtdSer transport processes in yeast. CASPubMed Google Scholar
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature443, 651–657 (2006). CASPubMed Google Scholar
Geta Tafesse, F. et al. Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J. Biol. Chem.282, 17537–17547 (2007). Google Scholar
Li, Z. et al. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim. Biophys. Acta1771, 1186–1194 (2007). CASPubMedPubMed Central Google Scholar
Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem.277, 32157–32164 (2002). CASPubMed Google Scholar
Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science303, 531–534 (2004). CASPubMed Google Scholar
Kolter, T. & Sandhoff, K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol.21, 81–103 (2005). CASPubMed Google Scholar
Vance, D. E. & Vance, J. E. Biochemistry of Lipids, Lipoproteins and Membranes (Elsevier, Amsterdam, 2002). Google Scholar
Nagle, C. A. et al. Hepatic overexpression of glycerol-_sn_-3-phosphate acyltransferase 1 in rats causes insulin resistance. J. Biol. Chem.282, 14807–14815 (2007). CASPubMed Google Scholar
Choi, J. Y., Wu, W. I. & Voelker, D. R. Phosphatidylserine decarboxylases as genetic and biochemical tools for studying phospholipid traffic. Anal. Biochem.347, 165–175 (2005). CASPubMed Google Scholar
Daum, G. Lipids of mitochondria. Biochim. Biophys. Acta822, 1–42 (1985). CASPubMed Google Scholar
Strauss, J. F., Kishida, T., Christenson, L. K., Fujimoto, T. & Hiroi, H. START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol. Cell. Endocrinol.202, 59–65 (2003). CASPubMed Google Scholar
Devaux, P. F. & Morris, R. Transmembrane asymmetry and lateral domains in biological membranes. Traffic5, 241–246 (2004). CASPubMed Google Scholar
Daleke, D. L. Phospholipid flippases. J. Biol. Chem.282, 821–825 (2007). CASPubMed Google Scholar
Pomorski, T. & Menon, A. K. Lipid flippases and their biological functions. Cell. Mol. Life Sci.63, 2908–2921 (2006). CASPubMed Google Scholar
Anglin, T. C., Liu, J. & Conboy, J. C. Facile lipid flip-flop in a phospholipid bilayer induced by gramicidin A measured by sum-frequency vibrational spectroscopy. Biophys. J.92, L01–L03 (2007). CASPubMed Google Scholar
Papadopulos, A. et al. Flippase activity detected with unlabeled lipids by shape changes of giant unilamellar vesicles. J. Biol. Chem.282, 15559–15568 (2007). CASPubMed Google Scholar
López-Montero, I. et al. Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes. J. Biol. Chem.280, 25811–25819 (2005). PubMed Google Scholar
Ganong, B. R. & Bell, R. M. Transmembrane movement of phosphatidylglycerol and diacylglycerol sulfhydryl analogues. Biochemistry23, 4977–4983 (1984). CASPubMed Google Scholar
Bai, J. & Pagano, R. E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry36, 8840–8848 (1997). CASPubMed Google Scholar
Steck, T. L., Ye, J. & Lange, Y. Probing red cell membrane cholesterol movement with cyclodextrin. Biophys. J.83, 2118–2125 (2002). CASPubMedPubMed Central Google Scholar
Cullis, P. R. et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim. Biophys. Acta1331, 187–211 (1997). CASPubMed Google Scholar
Kol, M. A., de Kroon, A. I., Killian, J. A. & de Kruijff, B. Transbilayer movement of phospholipids in biogenic membranes. Biochemistry43, 2673–2681 (2004). Summarizes the data and hypotheses that support a generic system for the non-selective transbilayer movement of lipids in the ER of eukaryotes and in the cytoplasmic membranes of bacteria. CASPubMed Google Scholar
Helenius, J. et al. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature415, 447–450 (2002). CASPubMed Google Scholar
Alaimo, C. et al. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J.25, 967–976 (2006). CASPubMedPubMed Central Google Scholar
Graham, T. R. Flippases and vesicle-mediated protein transport. Trends Cell Biol.14, 670–677 (2004). Summarizes important relationships between vesicular protein traffic and transbilayer phospholipid transport by P-type ATPases. CASPubMed Google Scholar
Pomorski, T. et al. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell14, 1240–1254 (2003). An important paper defining the participation of plasma membrane P-type ATPases in yeast in the transbilayer movement of aminoglycerophospholipids and their interplay with endocytic processes. CASPubMedPubMed Central Google Scholar
Riekhof, W. R. & Voelker, D. R. Uptake and utilization of lyso-phosphatidylethanolamine by Saccharomyces cerevisiae. J. Biol. Chem.281, 36588–36596 (2006). CASPubMed Google Scholar
Riekhof, W. R. et al. Lyso-phosphatidylcholine metabolism in Saccharomyces cerevisiae. The role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J. Biol. Chem. 21 Oct 2007 (doi:10.1074/jbc.M706718200) CAS Google Scholar
Natarajan, P., Wang, J., Hua, Z. & Graham, T. R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl. Acad. Sci. USA101, 10614–10619 (2004). CASPubMedPubMed Central Google Scholar
Alder-Baerens, N., Lisman, Q., Luong, L., Pomorski, T. & Holthuis, J. C. Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol. Biol. Cell17, 1632–1642 (2006). CASPubMedPubMed Central Google Scholar
Wang, X. et al. C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nature Cell Biol.9, 541–549 (2007). CASPubMed Google Scholar
Züllig, S. et al. Aminophospholipid translocase TAT-1 promotes phosphatidylserine exposure during C. elegans apoptosis. Curr. Biol.17, 994–999 (2007). PubMed Google Scholar
van Meer, G. & Simons, K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J.5, 1455–1464 (1986). CASPubMedPubMed Central Google Scholar
Young, W. W. Jr, Lutz, M. S. & Blackburn, W. A. Endogenous glycosphingolipids move to the cell surface at a rate consistent with bulk flow estimates. J. Biol. Chem.267, 12011–12015 (1992). CASPubMed Google Scholar
Baumann, N. A. et al. Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration. Biochemistry44, 5816–5826 (2005). CASPubMed Google Scholar
Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry27, 6197–6202 (1988). CASPubMed Google Scholar
Halter, D. et al. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis J. Cell Biol.179, 101–115 (2007). Suggests that the late Golgi protein FAPP2 transports GlcCer that is destined for complex glycolipid synthesis back to the ER, whereas GlcCer translocation to the cell surface depends on a proton gradient. CASPubMedPubMed Central Google Scholar
Smith, D. C. et al. The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol. Biol. Cell17, 1375–1387 (2006). CASPubMedPubMed Central Google Scholar
Sharma, D. K. et al. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem.278, 7564–7572 (2003). Demonstrates the non-uniform distribution of fluorescent phospholipids within individual endosomes. CASPubMed Google Scholar
Wang, T. Y. & Silvius, J. R. Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers. Biophys. J.79, 1478–1489 (2000). CASPubMedPubMed Central Google Scholar
Singh, R. D. et al. Inhibition of caveolar uptake, SV40 infection, and β1-integrin signaling by a nonnatural glycosphingolipid stereoisomer. J. Cell Biol.176, 895–901 (2007). CASPubMedPubMed Central Google Scholar
Sleight, R. G. & Pagano, R. E. Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J. Biol. Chem.258, 9050–9058 (1983). CASPubMed Google Scholar
Kaplan, M. R. & Simoni, R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol.101, 441–445 (1985). CASPubMed Google Scholar
Voelker, D. R. Characterization of phosphatidylserine synthesis and translocation in permeabilized animal cells. J. Biol. Chem.265, 14340–14346 (1990). CASPubMed Google Scholar
Vance, J. E., Aasman, E. J. & Szarka, R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites of synthesis to the cell surface. J. Biol. Chem.266, 8241–8247 (1991). CASPubMed Google Scholar
Wu, W. I. & Voelker, D. R. Characterization of phosphatidylserine transport to the locus of phosphatidylserine decarboxylase 2 in permeabilized yeast. J. Biol. Chem.276, 7114–7121 (2001). CASPubMed Google Scholar
Schumacher, M. M., Choi, J. Y. & Voelker, D. R. Phosphatidylserine transport to the mitochondria is regulated by ubiquitination. J. Biol. Chem.277, 51033–51042 (2002). CASPubMed Google Scholar
Papadopoulos, V. et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci.27, 402–409 (2006). Summarizes the major protein constituents involved in non-vesicular import of cholesterol into the mitochondria of cells involved in steroid hormone synthesis. CASPubMed Google Scholar
Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature426, 803–809 (2003). An important paper defining the genetic and biochemical mechanisms for non-vesicular transport of ceramide between the ER and the Golgi apparatus. CASPubMed Google Scholar
Warnock, D. E., Lutz, M. S., Blackburn, W. A., Young, W. W. Jr & Baenziger, J. U. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc. Natl. Acad. Sci. USA91, 2708–2712 (1994). CASPubMedPubMed Central Google Scholar
Trotter, P. J., Wu, W. I., Pedretti, J., Yates, R. & Voelker, D. R. A genetic screen for aminophospholipid transport mutants identifies the phosphatidylinositol 4-kinase, STT4p, as an essential component in phosphatidylserine metabolism. J. Biol. Chem.273, 13189–13196 (1998). CASPubMed Google Scholar
Wu, W. I. & Voelker, D. R. Reconstitution of phosphatidylserine transport from chemically defined donor membranes to phosphatidylserine decarboxylase 2 implicates specific lipid domains in the process. J. Biol. Chem.279, 6635–6642 (2004). CASPubMed Google Scholar
Raychaudhuri, S., Im, Y. J., Hurley, J. H. & Prinz, W. A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol.173, 107–119 (2006). CASPubMedPubMed Central Google Scholar
D'Angelo, G. et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature449, 62–67 (2007). Shows that FAPP2, a protein that is associated with the generation of transport carriers from the Golgi to the plasma membrane, appears to be a GlcCer transfer protein with a pivotal role in complex GSL synthesis. CASPubMed Google Scholar
Awai, K., Xu, C., Tamot, B. & Benning, C. A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc. Natl Acad. Sci. USA103, 10817–10822 (2006). Defines transport and intermembrane recognition components for moving phospholipids between the outer and inner chloroplast membranes. CASPubMedPubMed Central Google Scholar
Tefsen, B., Geurtsen, J., Beckers, F., Tommassen, J. & de Cock, H. Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J. Biol. Chem.280, 4504–4509 (2005). CASPubMed Google Scholar
Mousley, C. J., Tyeryar, K. R., Vincent-Pope, P. & Bankaitis, V. A. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim. Biophys. Acta1771, 727–736 (2007). CASPubMedPubMed Central Google Scholar
Litvak, V., Dahan, N., Ramachandran, S., Sabanay, H. & Lev, S. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nature Cell Biol.7, 225–234 (2005). CASPubMed Google Scholar
Chernomordik, L., Kozlov, M. M. & Zimmerberg, J. Lipids in biological membrane fusion. J. Membr. Biol.146, 1–14 (1995). CASPubMed Google Scholar
Shemesh, T., Luini, A., Malhotra, V., Burger, K. N. & Kozlov, M. M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J.85, 3813–3827 (2003). CASPubMedPubMed Central Google Scholar
Gennis, R. B. Biomembranes. Molecular Structure and Function (Springer Verlag, New York, 1989). Google Scholar
Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell127, 831–846 (2006). A careful reconstruction of synaptic vesicles shows that cholesterol and phospholipids (molar ratio 0.8) cover ∼70% of the surface while transmembrane helices cover 20%, with a lipid/protein ratio of 0.75 (w/w). CASPubMed Google Scholar
Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. & Jacobson, K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl Acad. Sci. USA98, 10642–10647 (2001). CASPubMedPubMed Central Google Scholar
Morse, S. A. Basalts and Phase Diagrams (Springer-Verlag, New York, 1980). Google Scholar
Parton, R. G. Ultrastructural localization of gangliosides: GM1 is concentrated in caveolae. J. Histochem. Cytochem.42, 155–166 (1994). CASPubMed Google Scholar
Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct.34, 351–378 (2005). Biological membrane lipids and proteins are divided into regions, some tens of nanometres in size, which have distinct molecular components and properties. CASPubMed Google Scholar
Lagerholm, B. C., Weinreb, G. E., Jacobson, K. & Thompson, N. L. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem.56, 309–336 (2005). CASPubMed Google Scholar
Feigenson, G. W. & Buboltz, J. T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J.80, 2775–2788 (2001). CASPubMedPubMed Central Google Scholar
Meder, D., Moreno, M. J., Verkade, P., Vaz, W. L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl Acad. Sci. USA103, 329–334 (2006). CASPubMedPubMed Central Google Scholar
Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic5, 213–230 (2004). CASPubMed Google Scholar
Bollinger, C. R., Teichgraber, V. & Gulbins, E. Ceramide-enriched membrane domains. Biochim. Biophys. Acta1746, 284–294 (2005). CASPubMed Google Scholar
Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J.24, 1537–1545 (2005). CASPubMedPubMed Central Google Scholar
Chiantia, S., Kahya, N., Ries, J. & Schwille, P. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys. J.90, 4500–4508 (2006). CASPubMedPubMed Central Google Scholar
Sot, J., Bagatolli, L. A., Goni, F. M. & Alonso, A. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys. J.90, 903–914 (2006). CASPubMed Google Scholar
Anishkin, A., Sukharev, S. & Colombini, M. Searching for the molecular arrangement of transmembrane ceramide channels. Biophys. J.90, 2414–2426 (2006). CASPubMedPubMed Central Google Scholar
Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J.82, 274–284 (2002). CASPubMedPubMed Central Google Scholar
Sengupta, P., Baird, B. & Holowka, D. Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin. Cell Dev. Biol.18, 583–590 (2007). CASPubMedPubMed Central Google Scholar
Dibble, A. R. & Feigenson, G. W. Detection of coexisting fluid phospholipid phases by equilibrium Ca2+ binding: peptide-poor Lα and peptide-rich HII phase coexistence in gramicidin A′/phospholipid dispersions. Biochemistry33, 12945–12953 (1994). CASPubMed Google Scholar
Lewis, R. N. et al. Studies of the minimum hydrophobicity of α-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Biochemistry46, 1042–1054 (2007). CASPubMed Google Scholar
Jacobson, K., Mouritsen, O. G. & Anderson, R. G. Lipid rafts: at a crossroad between cell biology and physics. Nature Cell Biol.9, 7–14 (2007). Proposes a model whereby transmembrane helices cover 15% of the surface and physically contact 30% of the membrane lipids, termed shell lipids. On receiving a signal, proteins control phase behaviour by combining their shell with similar lipid shells of other proteins. CASPubMed Google Scholar
Shogomori, H. et al. Palmitoylation and intracellular domain interactions both contribute to raft targeting of linker for activation of T cells. J. Biol. Chem.280, 18931–18942 (2005). CASPubMed Google Scholar
Brown, D. A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology21, 430–439 (2006). The use of detergent resistance to study the properties of biological membranes gives indirect information about protein and lipid phase preferences, but does not capture a snapshot of actual phase behaviour. CASPubMed Google Scholar
Epand, R. M. Cholesterol and the interaction of proteins with membrane domains. Prog. Lipid Res.45, 279–294 (2006). CASPubMed Google Scholar
Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol.7, 456–462 (2006). A critical discussion of lipid rafts, stressing that protein–protein interactions make major contributions to the stability of lipid-based domains, and that proteins and specific lipids such as cholesterol may accumulate at and affect domain boundaries. CAS Google Scholar
London, E. & Feigenson, G. W. Fluorescence quenching in model membranes. 2. Determination of local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum. Biochemistry20, 1939–1948 (1981). CASPubMed Google Scholar
Caffrey, M. & Feigenson, G. W. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics. Biochemistry20, 1949–1961 (1981). CASPubMed Google Scholar
Esmann, M. & Marsh, D. Lipid–protein interactions with the Na, K-ATPase. Chem. Phys. Lipids141, 94–104 (2006). CASPubMed Google Scholar
Soubias, O., Teague, W. E. & Gawrisch, K. Evidence for specificity in lipid–rhodopsin interactions. J. Biol. Chem.281, 33233–33241 (2006). CASPubMed Google Scholar
Andersen, O. S. & Koeppe, R. E. 2nd. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct.36, 107–130 (2007). CASPubMed Google Scholar
Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell116, 577–589 (2004). CASPubMed Google Scholar
Recktenwald, D. J. & McConnell, H. M. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry20, 4505–4510 (1981). CASPubMed Google Scholar
Wang, T. Y. & Silvius, J. R. Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys. J.81, 2762–2773 (2001). CASPubMedPubMed Central Google Scholar
Kiessling, V., Crane, J. M. & Tamm, L. K. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J.91, 3313–3326 (2006). CASPubMedPubMed Central Google Scholar
van Meer, G., Halter, D., Sprong, H., Somerharju, P. & Egmond, M. R. ABC lipid transporters: extruders, flippases, or flopless activators? FEBS Lett.580, 1171–1177 (2006). CASPubMed Google Scholar
Veatch, S. L. & Keller, S. L. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J.85, 3074–3083 (2003). CASPubMedPubMed Central Google Scholar
Veatch, S. L., Polozov, I. V., Gawrisch, K. & Keller, S. L. Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J.86, 2910–2922 (2004). CASPubMedPubMed Central Google Scholar
Wassall, S. R. et al. Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids132, 79–88 (2004). CASPubMed Google Scholar
Veatch, S. L., Gawrisch, K. & Keller, S. L. Closed-loop miscibility gap and quantitative tie-lines in ternary membranes containing diphytanoyl PC. Biophys. J.90, 4428–4436 (2006). CASPubMedPubMed Central Google Scholar
Bakht, O., Pathak, P. & London, E. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Biophys. J.93, 4307–4318 (2007). Polyunsaturated acyl chains of membrane lipids can effectively drive the formation of membrane rafts because of especially poor packing with cholesterol. CASPubMedPubMed Central Google Scholar
Kucerka, N., Tristram-Nagle, S. & Nagle, J. F. Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophys. J.90, L83–L85 (2006). CASPubMedPubMed Central Google Scholar
Liu, K., Hua, Z., Nepute, J. A. & Graham, T. R. Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Mol. Biol. Cell18, 487–500 (2007). CASPubMedPubMed Central Google Scholar