Tracking the ends: a dynamic protein network controls the fate of microtubule tips (original) (raw)
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell. Dev. Biol.13, 83–117 (1997). CASPubMed Google Scholar
Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature422, 753–758 (2003). CASPubMed Google Scholar
Nogales, E. & Wang, H. W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol.16, 221–229 (2006). CASPubMed Google Scholar
Nogales, E. & Wang, H. W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol.18, 179–184 (2006). CASPubMed Google Scholar
Schuyler, S. C. & Pellman, D. Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell105, 421–424 (2001). CASPubMed Google Scholar
Rickard, J. E. & Kreis, T. E. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J. Cell Biol.110, 1623–1633 (1990). CASPubMed Google Scholar
Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell96, 517–527 (1999). References6 and 7 describe the first identified microtubule plus-end tracking protein, CLIP170. CASPubMed Google Scholar
Lansbergen, G. & Akhmanova, A. Microtubule plus end: a hub of cellular activities. Traffic7, 499–507 (2006). CASPubMed Google Scholar
Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem.278, 36430–36434 (2003). CASPubMed Google Scholar
Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. & Winder, S. J. Functional plasticity of CH domains. FEBS Lett.513, 98–106 (2002). CASPubMed Google Scholar
Dougherty, G. W. et al. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. Cell Motil. Cytoskeleton62, 141–156 (2005). CASPubMed Google Scholar
Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nature Struct. Mol. Biol.14, 54–59 (2007). CAS Google Scholar
Honnappa, S., John, C. M., Kostrewa, D., Winkler, F. K. & Steinmetz, M. O. Structural insights into the EB1–APC interaction. EMBO J.24, 261–269 (2005). CASPubMed Google Scholar
Slep, K. C. et al. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J. Cell Biol.168, 587–598 (2005). CASPubMedPubMed Central Google Scholar
Komarova, Y. et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol. Biol. Cell16, 5334–5345 (2005). CASPubMedPubMed Central Google Scholar
Miller, R. K., D'Silva, S., Moore, J. K. & Goodson, H. V. The CLIP-170 orthologue Bik1p and positioning the mitotic spindle in yeast. Curr. Top. Dev. Biol.76, 49–87 (2006). CASPubMed Google Scholar
Weisbrich, A. et al. Structure-function relationship of CAP-Gly domains. Nature Struct. Mol. Biol.14, 959–967 (2007). CAS Google Scholar
Galjart, N. CLIPs and CLASPs and cellular dynamics. Nature Rev. Mol. Cell Biol.6, 487–498 (2005). CAS Google Scholar
Schroer, T. A. Dynactin. Annu. Rev. Cell. Dev. Biol.20, 759–779 (2004). CASPubMed Google Scholar
Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell13, 3627–3645 (2002). CASPubMedPubMed Central Google Scholar
Bu, W. & Su, L. K. Characterization of functional domains of human EB1 family proteins. J. Biol. Chem.278, 49721–49731 (2003). CASPubMed Google Scholar
Goodson, H. V. et al. CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms. Cell Motil. Cytoskeleton55, 156–173 (2003). CASPubMed Google Scholar
Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol.14, 548–559 (2004). CASPubMed Google Scholar
Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localisation. J. Cell Biol.166, 1003–1014 (2004). CASPubMedPubMed Central Google Scholar
Ligon, L. A., Shelly, S. S., Tokito, M. K. & Holzbaur, E. L. Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct plus-end complexes. FEBS Lett.580, 1327–1332 (2006). CASPubMedPubMed Central Google Scholar
Li, S. et al. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J. Biol. Chem.277, 48596–48601 (2002). CASPubMed Google Scholar
Saito, K. et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure12, 1719–1728 (2004). CASPubMed Google Scholar
Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell19, 449–460 (2005). CASPubMed Google Scholar
Honnappa, S. et al. Key interaction modes of dynamic +TIP networks. Mol. Cell23, 663–671 (2006). CASPubMed Google Scholar
Hayashi, I., Plevin, M. J. & Ikura, M. Autoinhibitory interactions within CLIP-170 mimic the intermolecular binding modes of p150Glued and EB1, providing a structural basis for the regulation of microtubule dynamics. Nature Struct. Biol.14, 980–981 (2007). CAS Google Scholar
Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell27, 976–991 (2007). CASPubMedPubMed Central Google Scholar
Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell70, 887–900 (1992). CASPubMed Google Scholar
De Zeeuw, C. I. et al. CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron19, 1187–1199 (1997). CASPubMed Google Scholar
Nathke, I. S. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu. Rev. Cell Dev. Biol.20, 337–366 (2004). PubMed Google Scholar
Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol.140, 377–390 (1998). CASPubMedPubMed Central Google Scholar
Jefferson, J. J., Leung, C. L. & Liem, R. K. Plakins: goliaths that link cell junctions and the cytoskeleton. Nature Rev. Mol. Cell Biol.5, 542–553 (2004). CAS Google Scholar
Grigoriev, I. et al. STIM1 is a microtubule plus end tracking protein involved in remodeling of the endoplasmic reticulum. Curr. Biol18, 177–182 (2008). CASPubMedPubMed Central Google Scholar
Wu, X. S., Tsan, G. L. & Hammer, J. A. Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol.171, 201–207 (2005). CASPubMedPubMed Central Google Scholar
Martinez-Lopez, M. J. et al. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol. Cell Neurosci.28, 599–612 (2005). CASPubMed Google Scholar
Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol.14, 1827–1833 (2004). CASPubMed Google Scholar
Hoogenraad, C. C., Akhmanova, A., Grosveld, F., De Zeeuw, C. I. & Galjart, N. Functional analysis of CLIP-115 and its binding to microtubules. J. Cell Sci.113, 2285–2297 (2000). CASPubMed Google Scholar
Culver-Hanlon, T. L., Lex, S. A., Stephens, A. D., Quintyne, N. J. & King, S. J. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nature Cell Biol.8, 264–270 (2006). CASPubMed Google Scholar
Gard, D. L., Becker, B. E. & Josh Romney, S. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int. Rev. Cytol.239, 179–272 (2004). CASPubMed Google Scholar
Al-Bassam, J., Larsen, N. A., Hyman, A. A. & Harrison, S. C. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. Structure15, 355–362 (2007). CASPubMed Google Scholar
Kim, M. H. et al. The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure12, 987–998 (2004). CASPubMed Google Scholar
Tarricone, C. et al. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron44, 809–821 (2004). CASPubMed Google Scholar
Tai, C. Y., Dujardin, D. L., Faulkner, N. E. & Vallee, R. B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol.156, 959–968 (2002). CASPubMedPubMed Central Google Scholar
Coquelle, F. M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol.22, 3089–3102 (2002). CASPubMedPubMed Central Google Scholar
Wu, X., Xiang, X. & Hammer, J. A. Motor proteins at the microtubule plus-end. Trends Cell Biol.16, 135–143 (2006). PubMed Google Scholar
Carvalho, P., Gupta, M. L. Jr, Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell6, 815–829 (2004). CASPubMed Google Scholar
Salmon, E. D. Microtubules: a ring for the depolymerization motor. Curr. Biol.15, R299–R302 (2005). CASPubMed Google Scholar
Mennella, V. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nature Cell Biol.7, 235–245 (2005). The first demonstration that a microtubule-destabilizing factor can also track growing microtubule ends. CASPubMed Google Scholar
Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell132, 79–88 (2008). A thorough analysis of XMAP215 behaviour and activity at the microtubule ends at a single molecule level. CASPubMedPubMed Central Google Scholar
Sandblad, L. et al. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell127, 1415–1424 (2006). An elegant structural study, which shows microtubule seam binding by an EB family member. CASPubMed Google Scholar
Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature450, 1100–1105 (2007). For the first time, describes thein vitroreconstitution of plus-end tracking behaviour of the three main fission yeast +TIPs: Mal3, Tip1 and Tea2. CASPubMed Google Scholar
Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell6, 831–843 (2004). CASPubMed Google Scholar
Tirnauer, J. S., Grego, S., Salmon, E. D. & Mitchison, T. J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell13, 3614–3626 (2002). CASPubMedPubMed Central Google Scholar
Arnal, I., Heichette, C., Diamantopoulos, G. S. & Chretien, D. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr. Biol.14, 2086–2095 (2004). CASPubMed Google Scholar
Diamantopoulos, G. S. et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol.144, 99–112 (1999). CASPubMedPubMed Central Google Scholar
Folker, E. S., Baker, B. M. & Goodson, H. V. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of CLIP-170 plus-end tracking behavior. Mol. Biol. Cell16, 5373–5384 (2005). CASPubMedPubMed Central Google Scholar
Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature441, 115–119 (2006). CASPubMed Google Scholar
Jimbo, T. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol.4, 323–327 (2002). CASPubMed Google Scholar
Siegrist, S. E. & Doe, C. Q. Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell123, 1323–1335 (2005). CASPubMed Google Scholar
Carvalho, P., Tirnauer, J. S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol.13, 229–237 (2003). CASPubMed Google Scholar
Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res.55, 2972–2977 (1995). CASPubMed Google Scholar
Browning, H., Hackney, D. D. & Nurse, P. Targeted movement of cell end factors in fission yeast. Nature Cell Biol.5, 812–818 (2003). CASPubMed Google Scholar
Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol.168, 141–153 (2005). CASPubMedPubMed Central Google Scholar
Niethammer, P. et al. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol.5, e29 (2007). One of the first attempts to achieve an integrated view of interactions between multiple MAPs and their regulation during the cell cycle. PubMedPubMed Central Google Scholar
Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol.6, 820–830 (2004). CASPubMed Google Scholar
Mishima, M. et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc. Natl Acad. Sci. USA104, 10346–10351 (2007). Together with references17, 29 and 30, provides a structural basis of interactions between CAP-Gly domains and EEY/F motifs. CASPubMedPubMed Central Google Scholar
Badin-Larcon, A. C. et al. Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proc. Natl Acad. Sci. USA101, 5577–5582 (2004). CASPubMedPubMed Central Google Scholar
Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol.174, 839–849 (2006). CASPubMedPubMed Central Google Scholar
Wolyniak, M. J. et al. The regulation of microtubule dynamics in Saccharomyces cerevisiae by three interacting plus-end tracking proteins. Mol. Biol. Cell17, 2789–2798 (2006). CASPubMedPubMed Central Google Scholar
Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell112, 561–574 (2003). Shows how the interaction between microtubule tips and the actin system contributes to spindle positioning in budding yeast. CASPubMed Google Scholar
Sheeman, B. et al. Determinants of Saccharomyces cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol.13, 364–372 (2003). CASPubMed Google Scholar
Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol.11, 44–49 (2001). CASPubMed Google Scholar
Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell104, 923–935 (2001). CASPubMed Google Scholar
Wittmann, T. & Waterman-Storer, C. M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J. Cell Biol.169, 929–939 (2005). CASPubMedPubMed Central Google Scholar
Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron42, 897–912 (2004). CASPubMed Google Scholar
Choi, J. H. et al. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep.3, 988–994 (2002). CASPubMedPubMed Central Google Scholar
Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K. T. A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J. Cell Biol.158, 305–319 (2002). CASPubMedPubMed Central Google Scholar
Zhang, X., Lan, W., Ems-McClung, S. C., Stukenberg, P. T. & Walczak, C. E. Aurora B phosphorylates multiple sites on MCAK to spatially and temporally regulate its function. Mol. Biol. Cell18, 3264–3276 (2007). CASPubMedPubMed Central Google Scholar
Maekawa, H. & Schiebel, E. Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev.18, 1709–1724 (2004). CASPubMedPubMed Central Google Scholar
Moore, J. K. & Miller, R. K. The cyclin-dependent kinase Cdc28p regulates multiple aspects of Kar9p function in yeast. Mol. Biol. Cell18, 1187–1202 (2007). CASPubMedPubMed Central Google Scholar
Manna, T., Honnappa, S., Steinmetz, M. O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150(Glued). Biochemistry47, 779–786 (2007). PubMed Google Scholar
Li, Z. & Nathke, I. S. Tumor-associated NH2-terminal fragments are the most stable part of the adenomatous polyposis coli protein and can be regulated by interactions with COOH-terminal domains. Cancer Res.65, 5195–5204 (2005). CASPubMed Google Scholar
Moore, A. & Wordeman, L. C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity. Biochem. J.383, 227–235 (2004). CASPubMedPubMed Central Google Scholar
Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. & Borisy, G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol.159, 589–599 (2002). CASPubMedPubMed Central Google Scholar
Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol.4, 938–947 (2003). CAS Google Scholar
Erck, C. et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl Acad. Sci. USA102, 7853–7858 (2005). CASPubMedPubMed Central Google Scholar
Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol.17, 47–54 (2005). CASPubMed Google Scholar
Hestermann, A., Rehberg, M. & Graf, R. Centrosomal microtubule plus end tracking proteins and their role in Dictyostelium cell dynamics. J. Muscle Res. Cell Motil.23, 621–630 (2002). CASPubMed Google Scholar
Moores, C. A. & Milligan, R. A. Lucky 13-microtubule depolymerisation by kinesin-13 motors. J. Cell Sci.119, 3905–3913 (2006). CASPubMed Google Scholar
Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature442, 709–712 (2006). CASPubMed Google Scholar
Schek, H. T., Gardner, M. K., Cheng, J., Odde, D. J. & Hunt, A. J. Microtubule assembly dynamics at the nanoscale. Curr. Biol.17, 1445–1455 (2007). References94 and 95 are the first to examine microtubule growth at the nanoscale level using optical tweezers. Their partly conflicting conclusions require further examination. CASPubMedPubMed Central Google Scholar
Kita, K., Wittmann, T., Nathke, I. S. & Waterman-Storer, C. M. Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol. Biol. Cell17, 2331–2345 (2006). CASPubMedPubMed Central Google Scholar
Sousa, A., Reis, R., Sampaio, P. & Sunkel, C. E. The Drosophila CLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. Cell Motil. Cytoskeleton64, 605–620 (2007). CASPubMed Google Scholar
Lee, T., Langford, K. J., Askham, J. M., Bruning-Richardson, A. & Morrison, E. E. MCAK associates with EB1. Oncogene, 29 Oct 2007 (doi:10.1038/sj.onc.1210867). PubMed Google Scholar
Moore, A. T. et al. MCAK associates with the tips of polymerizing microtubules. J. Cell Biol.169, 391–397 (2005). CASPubMedPubMed Central Google Scholar
Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell11, 21–32 (2006). CASPubMed Google Scholar
Grallert, A. et al. Schizosaccharomyces pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev.20, 2421–2436 (2006). CASPubMedPubMed Central Google Scholar
Huisman, S. M. & Segal, M. Cortical capture of microtubules and spindle polarity in budding yeast — where's the catch? J. Cell Sci.118, 463–471 (2005). CASPubMed Google Scholar
Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol.16, 106–112 (2004). CASPubMed Google Scholar
Siegrist, S. E. & Doe, C. Q. Microtubule-induced cortical cell polarity. Genes Dev.21, 483–496 (2007). CASPubMed Google Scholar
Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell115, 343–354 (2003). CASPubMed Google Scholar
Tsvetkov, A. S., Samsonov, A., Akhmanova, A., Galjart, N. & Popov, S. V. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil. Cytoskeleton64, 519–530 (2007). CASPubMed Google Scholar
Moseley, J. B. et al. Regulated binding of adenomatous polyposis coli protein to actin. J. Biol. Chem.282, 12661–12668 (2007). CASPubMed Google Scholar
Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A. & Hall, A. Cdc42 and Par6-PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol.170, 895–901 (2005). CASPubMedPubMed Central Google Scholar
Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol.16, 2259–2264 (2006). CASPubMed Google Scholar
Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature446, 284–287 (2007). CASPubMed Google Scholar
Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci.117, 5461–5477 (2004). CASPubMed Google Scholar
Pearson, C. G. & Bloom, K. Dynamic microtubules lead the way for spindle positioning. Nature Rev. Mol. Cell Biol.5, 481–492 (2004). CAS Google Scholar
Pecreaux, J. et al. Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr. Biol.16, 2111–2122 (2006). CASPubMed Google Scholar
Kim, H. et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol.176, 641–651 (2007). CASPubMedPubMed Central Google Scholar
Watson, P. & Stephens, D. J. Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J. Cell Sci.119, 2758–2767 (2006). CASPubMed Google Scholar
Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol.171, 229–240 (2005). CASPubMedPubMed Central Google Scholar
Ambrose, J. C., Li, W., Marcus, A., Ma, H. & Cyr, R. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell16, 1584–1592 (2005). CASPubMedPubMed Central Google Scholar
Ambrose, J. C. & Cyr, R. The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell19, 226–236 (2007). CASPubMedPubMed Central Google Scholar
Janson, M. E. et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell128, 357–368 (2007). Provides a quantitative view of interphase microtubule bundle formation in interphase fission yeast cells. CASPubMed Google Scholar
Dogterom, M., Kerssemakers, J. W., Romet-Lemonne, G. & Janson, M. E. Force generation by dynamic microtubules. Curr. Opin. Cell Biol.17, 67–74 (2005). CASPubMed Google Scholar
Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol.15, 48–53 (2003). CASPubMed Google Scholar
Small, J. V. & Kaverina, I. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin. Cell Biol.15, 40–47 (2003). CASPubMed Google Scholar
Stehbens, S. J. et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell–cell contacts. J. Cell Sci.119, 1801–1811 (2006). CASPubMed Google Scholar
Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell128, 547–560 (2007). CASPubMedPubMed Central Google Scholar
Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature435, 911–915 (2005). CASPubMedPubMed Central Google Scholar
Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays13, 285–293 (1991). CASPubMed Google Scholar
Mialhe, A. et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res.61, 5024–5027 (2001). CASPubMed Google Scholar
Kato, C. et al. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int. J. Cancer112, 365–375 (2004). CASPubMed Google Scholar