Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes (original) (raw)
Flier, J. S. Obesity wars: molecular progress confronts an expanding epidemic. Cell116, 337–350 (2004). ArticleCASPubMed Google Scholar
Hogan, P., Dall, T. & Nikolov, P. Economic costs of diabetes in the US in 2002. Diabetes Care26, 917–932 (2003). ArticlePubMed Google Scholar
Alberti, K. G. The costs of non-insulin-dependent diabetes mellitus. Diabet. Med.14, 7–9 (1997). ArticleCASPubMed Google Scholar
Clee, S. M. & Attie, A. D. The genetic landscape of type 2 diabetes in mice. Endocr. Rev.28, 48–83 (2007). ArticleCASPubMed Google Scholar
Sims, E. A. et al. Endocrine and metabolic effects of experimental obesity in man. Recent Prog. Horm. Res.29, 457–496 (1973). CASPubMed Google Scholar
Freidenberg, G. R., Reichart, D., Olefsky, J. M. & Henry, R. R. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J. Clin. Invest.82, 1398–1406 (1988). ArticleCASPubMedPubMed Central Google Scholar
Kahn, S. E. The relative contributions of insulin resistance and β-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia46, 3–19 (2003). ArticleCASPubMed Google Scholar
Butler, A. E. et al. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes52, 102–110 (2003). ArticleCASPubMed Google Scholar
Rhodes, C. J. Type 2 diabetes—a matter of β-cell life and death? Science307, 380–384 (2005). ArticleCASPubMed Google Scholar
Unger, R. H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes44, 863–870 (1995). ArticleCASPubMed Google Scholar
Savage, D. B., Petersen, K. F. & Shulman, G. I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev.87, 507–520 (2007). A recent review focusing on studies of lipid effects on insulin resistance in human subjects. ArticleCASPubMed Google Scholar
Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes46, 3–10 (1997). Demonstrates that infusion of free fatty acids acutely induces insulin resistance in human subjects. ArticleCASPubMed Google Scholar
Kelley, D. E., Mokan, M., Simoneau, J. A. & Mandarino, L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J. Clin. Invest.92, 91–98 (1993). ArticleCASPubMedPubMed Central Google Scholar
Santomauro, A. T. et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes48, 1836–1841 (1999). ArticleCASPubMed Google Scholar
Oakes, N. D. et al. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise: parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA. Diabetes46, 2022–2028 (1997). ArticleCASPubMed Google Scholar
Goodpaster, B. H., Thaete, F. L., Simoneau, J. A. & Kelley, D. E. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes46, 1579–1585 (1997). ArticleCASPubMed Google Scholar
Perseghin, G. et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes48, 1600–1606 (1999). ArticleCASPubMed Google Scholar
Krssak, M. et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia42, 113–116 (1999). ArticleCASPubMed Google Scholar
Szczepaniak, L. S. et al. Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am. J. Physiol.276, E977–E989 (1999). CASPubMed Google Scholar
Sovik, O., Vestergaard, H., Trygstad, O. & Pedersen, O. Studies of insulin resistance in congenital generalized lipodystrophy. Acta Paediatr. Suppl.413, 29–37 (1996). ArticleCASPubMed Google Scholar
Shimomura, I. et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev.12, 3182–3194 (1998). ArticleCASPubMedPubMed Central Google Scholar
Arioglu, E., Rother, K. I., Reitman, M. L., Premkumar, A. & Taylor, S. I. Lipoatrophy syndromes: when 'too little fat' is a clinical problem. Pediatr. Diabetes1, 155–168 (2000). ArticleCASPubMed Google Scholar
Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med.346, 570–578 (2002). ArticleCASPubMed Google Scholar
Berg, A. H., Combs, T. P. & Scherer, P. E. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol. Metab.13, 84–89 (2002). ArticleCASPubMed Google Scholar
Unger, R. H. & Orci, L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J.15, 312–321 (2001). ArticleCASPubMed Google Scholar
Kalderon, B., Mayorek, N., Berry, E., Zevit, N. & Bar-Tana, J. Fatty acid cycling in the fasting rat. Am. J. Physiol. Endocrinol. Metab.279, E221–E227 (2000). ArticleCASPubMed Google Scholar
Christianson, J. L., Nicoloro, S., Straubhaar, J. & Czech, M. P. Stearoyl CoA desaturase 2 is required for PPARγ expression and adipogenesis in cultured 3T3-L1 cells. J. Biol. Chem.283, 2906–2916 (2007). ArticlePubMedCAS Google Scholar
Frayn, K. N. et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am. J. Physiol.266, E308–E317 (1994). CASPubMed Google Scholar
Qatanani, M. & Lazar, M. A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev.21, 1443–1455 (2007). ArticleCASPubMed Google Scholar
Rajala, M. W. & Scherer, P. E. Minireview: the adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology144, 3765–3773 (2003). ArticleCASPubMed Google Scholar
Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab.89, 2548–2556 (2004). ArticleCASPubMed Google Scholar
Sartipy, P. & Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl Acad. Sci. USA100, 7265–7270 (2003). ArticleCASPubMedPubMed Central Google Scholar
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112, 1821–1830 (2003). ArticleCASPubMedPubMed Central Google Scholar
Curat, C. A. et al. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes53, 1285–1292 (2004). ArticleCASPubMed Google Scholar
Inouye, K. E. et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes56, 2242–2250 (2007). ArticleCASPubMed Google Scholar
Lagathu, C. et al. Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia49, 2162–2173 (2006). ArticleCASPubMed Google Scholar
Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest.116, 1494–1505 (2006). ArticleCASPubMedPubMed Central Google Scholar
Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature389, 610–614 (1997). Strongly suggests a role for an inflammatory cytokine in mediating insulin resistance. ArticleCASPubMed Google Scholar
Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab.6, 386–397 (2007). ArticleCASPubMed Google Scholar
Harman-Boehm, I. et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab.92, 2240–2247 (2007). ArticleCASPubMed Google Scholar
Bruun, J. M., Helge, J. W., Richelsen, B. & Stallknecht, B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am. J. Physiol. Endocrinol. Metab.290, E961–E967 (2006). ArticleCASPubMed Google Scholar
Cancello, R. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes54, 2277–2286 (2005). ArticleCASPubMed Google Scholar
Bouzakri, K. & Zierath, J. R. MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-α-induced insulin resistance. J. Biol. Chem.282, 7783–7789 (2007). ArticleCASPubMed Google Scholar
Tang, X. et al. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARγ, adipogenesis, and insulin-responsive hexose transport. Proc. Natl Acad. Sci. USA103, 2087–2092 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tesz, G. J. et al. Tumor necrosis factor α (TNFα) stimulates Map4k4 expression through TNFα receptor 1 signaling to c-Jun and activating transcription factor 2. J. Biol. Chem.282, 19302–19312 (2007). ArticleCASPubMed Google Scholar
Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol.68, 123–158 (2006). ArticleCASPubMed Google Scholar
Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes45, 881–885 (1996). ArticlePubMed Google Scholar
Paquot, N., Castillo, M. J., Lefebvre, P. J. & Scheen, A. J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. Metab.85, 1316–1319 (2000). CASPubMed Google Scholar
Kraegen, E. W., Cooney, G. J., Ye, J. M., Thompson, A. L. & Furler, S. M. The role of lipids in the pathogenesis of muscle insulin resistance and β cell failure in type II diabetes and obesity. Exp. Clin. Endocrinol. Diabetes.109 (Suppl. 2), S189–S201 (2001).Article ArticleCASPubMed Google Scholar
Aguirre, V., Uchida, T., Yenush, L., Davis, R. & White, M. F. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J. Biol. Chem.275, 9047–9054 (2000). ArticleCASPubMed Google Scholar
Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature420, 333–336 (2002). ArticleCASPubMed Google Scholar
Gao, Z. et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem.277, 48115–48121 (2002). ArticleCASPubMed Google Scholar
Griffin, M. E. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin signaling cascade. Diabetes48, 1270–1274 (1999). ArticleCASPubMed Google Scholar
Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem.277, 50230–50236 (2002). ArticleCASPubMed Google Scholar
Dresner, A. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest.103, 253–259 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science293, 1673–1677 (2001). ArticleCASPubMed Google Scholar
Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest.109, 1321–1326 (2002). ArticleCASPubMedPubMed Central Google Scholar
Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature431, 200–205 (2004). ArticleCASPubMed Google Scholar
Senn, J. J. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J. Biol. Chem.281, 26865–26875 (2006). ArticleCASPubMed Google Scholar
Song, M. J., Kim, K. H., Yoon, J. M. & Kim, J. B. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem. Biophys. Res. Commun.346, 739–745 (2006). ArticleCASPubMed Google Scholar
Suganami, T. et al. Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler. Thromb. Vasc. Biol.27, 84–91 (2007). ArticleCASPubMed Google Scholar
Tsukumo, D. M. et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes56, 1986–1998 (2007). ArticleCASPubMed Google Scholar
Hannun, Y. A. The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem.269, 3125–3128 (1994). ArticleCASPubMed Google Scholar
Shimabukuro, M. et al. Lipoapoptosis in β-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem.273, 32487–32490 (1998). ArticleCASPubMed Google Scholar
Summers, S. A., Garza, L. A., Zhou, H. & Birnbaum, M. J. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol.18, 5457–5464 (1998). ArticleCASPubMedPubMed Central Google Scholar
Powell, D. J., Turban, S., Gray, A., Hajduch, E. & Hundal, H. S. Intracellular ceramide synthesis and protein kinase Cζ activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem. J.382, 619–629 (2004). ArticleCASPubMedPubMed Central Google Scholar
Summers, S. A. & Nelson, D. H. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes54, 591–602 (2005). ArticleCASPubMed Google Scholar
Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab.5, 167–179 (2007). ArticleCASPubMed Google Scholar
Turinsky, J., O'Sullivan, D. M. & Bayly, B. P. 1, 2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J. Biol. Chem.265, 16880–16885 (1990). ArticleCASPubMed Google Scholar
Adams, J. M. et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes53, 25–31 (2004). ArticleCASPubMed Google Scholar
Tamori, Y., Masugi, J., Nishino, N. & Kasuga, M. Role of peroxisome proliferator-activated receptor-g in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes51, 2045–2055 (2002). ArticleCASPubMed Google Scholar
Imai, T. et al. Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl Acad. Sci. USA101, 4543–4547 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhang, B. et al. Negative regulation of peroxisome proliferator-activated receptor-γ gene expression contributes to the antiadipogenic effects of tumor necrosis factor-α. Mol. Endocrinol.10, 1457–1466 (1996). CASPubMed Google Scholar
Stephens, J. M., Lee, J. & Pilch, P. F. Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J. Biol. Chem.272, 971–976 (1997). ArticleCASPubMed Google Scholar
Ruan, H., Hacohen, N., Golub, T. R., Van Parijs, L. & Lodish, H. F. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-κB activation by TNF-α is obligatory. Diabetes51, 1319–1336 (2002). ArticleCASPubMed Google Scholar
Puri, V., Virbasius, J. V., Guilherme, A. & Czech, M. P. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27. Acta Physiol. (Oxf.)192, 103–115 (2008). ArticleCAS Google Scholar
Floyd, Z. E. & Stephens, J. M. Interferon-γ-mediated activation and ubiquitin-proteasome-dependent degradation of PPARγ in adipocytes. J. Biol. Chem.277, 4062–4068 (2002). ArticleCASPubMed Google Scholar
Medina, E. A. et al. Tumour necrosis factor-α decreases Akt protein levels in 3T3-L1 adipocytes via the caspase-dependent ubiquitination of Akt. Endocrinology146, 2726–2735 (2005). ArticleCASPubMed Google Scholar
Diradourian, C., Girard, J. & Pegorier, J. P. Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie87, 33–38 (2005). ArticleCASPubMed Google Scholar
Hauser, S. et al. Degradation of the peroxisome proliferator-activated receptor γ is linked to ligand-dependent activation. J. Biol. Chem.275, 18527–18533 (2000). ArticleCASPubMed Google Scholar
Shao, D. et al. Interdomain communication regulating ligand binding by PPAR-γ. Nature396, 377–380 (1998). ArticleCASPubMed Google Scholar
Hu, E., Kim, J. B., Sarraf, P. & Spiegelman, B. M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science274, 2100–2103 (1996). ArticleCASPubMed Google Scholar
Camp, H. S. & Tafuri, S. R. Regulation of peroxisome proliferator-activated receptor γ activity by mitogen-activated protein kinase. J. Biol. Chem.272, 10811–10816 (1997). ArticleCASPubMed Google Scholar
Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, C. R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med.339, 953–959 (1998). ArticleCASPubMed Google Scholar
Rangwala, S. M. et al. Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity. Dev. Cell5, 657–663 (2003). ArticleCASPubMed Google Scholar
Feige, J. N. & Auwerx, J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol.17, 292–301 (2007). ArticleCASPubMed Google Scholar
Leonardsson, G. et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc. Natl Acad. Sci. USA101, 8437–8442 (2004). ArticleCASPubMedPubMed Central Google Scholar
Powelka, A. M. et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J. Clin. Invest.116, 125–136 (2006). ArticleCASPubMed Google Scholar
Wu, Z. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell92, 829–839 (1998). ArticlePubMed Google Scholar
Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest.116, 615–622 (2006). ArticleCASPubMedPubMed Central Google Scholar
Large, V., Peroni, O., Letexier, D., Ray, H. & Beylot, M. Metabolism of lipids in human white adipocyte. Diabetes Metab.30, 294–309 (2004). ArticleCASPubMed Google Scholar
Arner, P. Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract. Res. Clin. Endocrinol Metab.19, 471–482 (2005). ArticleCASPubMed Google Scholar
Degerman, E., Resjo, S., Landstrom, T. R. & Manganiello, V. Methods to study phosphorylation and activation of the hormone-sensitive adipocyte phosphodiesterase type 3B in rat adipocytes. Methods Mol. Biol.155, 167–180 (2001). CASPubMed Google Scholar
Granneman, J. G. & Moore, H. P. Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol. Metab.19, 3–9 (2008). ArticleCASPubMed Google Scholar
Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science306, 1383–1386 (2004). ArticleCASPubMed Google Scholar
Ryden, M. et al. Comparative studies of the role of hormone-sensitive lipase and adipose triglyceride lipase in human fat cell lipolysis. Am. J. Physiol. Endocrinol. Metab.292, E1847–E1855 (2007). ArticleCASPubMed Google Scholar
Brasaemle, D. L. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res.48, 2547–2559 (2007). ArticleCASPubMed Google Scholar
Ducharme, N. A. & Bickel, P. E. Minireview: lipid droplets in lipogenesis and lipolysis. Endocrinology149, 942–949 (2008). Summarizes recent developments in the field of lipid-droplet structure and function. ArticleCASPubMed Google Scholar
Langin, D. & Arner, P. Importance of TNFα and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol. Metab.17, 314–320 (2006). ArticleCASPubMed Google Scholar
Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L. & Spiegelman, B. M. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J. Clin. Invest.95, 2409–2415 (1995). ArticleCASPubMedPubMed Central Google Scholar
Engfeldt, P. & Arner, P. Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm. Metab. Res. Suppl.19, 26–29 (1988). CASPubMed Google Scholar
Tontonoz, P., Hu, E., Devine, J., Beale, E. G. & Spiegelman, B. M. PPAR γ 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol.15, 351–357 (1995). ArticleCASPubMedPubMed Central Google Scholar
Dalen, K. T. et al. Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-γ. Diabetes53, 1243–1252 (2004). ArticleCASPubMed Google Scholar
Wolins, N. E. et al. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes55, 3418–3428 (2006). ArticleCASPubMed Google Scholar
Kadereit, B. et al. Evolutionarily conserved gene family important for fat storage. Proc. Natl Acad. Sci. USA105, 94–99 (2008). ArticleCASPubMed Google Scholar
Puri, V. et al. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J. Biol. Chem.282, 34213–34218 (2007). ArticleCASPubMed Google Scholar
Liang, L., Zhao, M., Xu, Z., Yokoyama, K. K. & Li, T. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem. J.370, 195–203 (2003). ArticleCASPubMedPubMed Central Google Scholar
Inohara, N., Koseki, T., Chen, S., Wu, X. & Nunez, G. CIDE, a novel family of cell death activators with homology to the 45 kDa subunit of the DNA fragmentation factor. EMBO J.17, 2526–2533 (1998). ArticleCASPubMedPubMed Central Google Scholar
Puri, V. et al. Cidea: a novel lipid droplet protein associated with insulin sensitivity in humans. Proc. Natl Acad. Sci. USA (in the press).
Brasaemle, D. L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem.279, 46835–46842 (2004). ArticleCASPubMed Google Scholar
Martinez-Botas, J. et al. Absence of perilipin results in leanness and reverses obesity in Leprdb/db mice. Nature Genet.26, 474–479 (2000). ArticleCASPubMed Google Scholar
Nordstrom, E. A. et al. A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-α)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes54, 1726–1734 (2005). ArticlePubMed Google Scholar
Wolins, N. E., Brasaemle, D. L. & Bickel, P. E. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett.580, 5484–5491 (2006). ArticleCASPubMed Google Scholar
Perugini, R. A. et al. Metabolic characterization of nondiabetic severely obese patients undergoing Roux-en-Y gastric bypass: preoperative classification predicts the effects of gastric bypass on insulin-glucose homeostasis. J. Gastrointest. Surg.11, 1083–1090 (2007). ArticlePubMed Google Scholar
Kim, H. J. et al. Depot-specific regulation of perilipin by rosiglitazone in a diabetic animal model. Metabolism56, 676–685 (2007). ArticleCASPubMed Google Scholar
Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab.293, E444–E452 (2007). ArticleCASPubMed Google Scholar
Katagiri, H., Yamada, T. & Oka, Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ. Res.101, 27–39 (2007). ArticleCASPubMed Google Scholar
Bartness, T. J. & Song, C. K. Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J. Lipid Res.48, 1655–1672 (2007). ArticleCASPubMed Google Scholar
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet.34, 267–273 (2003). ArticleCASPubMed Google Scholar
Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA100, 8466–8471 (2003). ArticleCASPubMedPubMed Central Google Scholar
Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med.350, 664–671 (2004). ArticleCASPubMedPubMed Central Google Scholar
Richardson, D. K. et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J. Biol. Chem.280, 10290–10297 (2005). ArticleCASPubMed Google Scholar
Sparks, L. M. et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes54, 1926–1933 (2005). ArticleCASPubMed Google Scholar
Petersen, K. F. et al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes54, 603–608 (2005). ArticleCASPubMed Google Scholar
Morino, K., Petersen, K. F. & Shulman, G. I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes55 (Suppl. 2), S9–S15 (2006).Article ArticleCASPubMed Google Scholar
Turner, N. et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes56, 2085–2092 (2007). ArticleCASPubMed Google Scholar
Koves, T. R. et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab.7, 45–56 (2008). ArticleCASPubMed Google Scholar