mTOR: from growth signal integration to cancer, diabetes and ageing (original) (raw)
Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science253, 905–909 (1991). CASPubMed Google Scholar
Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell78, 35–43 (1994). CASPubMed Google Scholar
Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature369, 756–758 (1994). CASPubMed Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell110, 177–189 (2002). CASPubMed Google Scholar
Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002). CASPubMed Google Scholar
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14, 1296–1302 (2004). CASPubMed Google Scholar
Nojima, H. et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem.278, 15461–15464 (2003). CASPubMed Google Scholar
Schalm, S. S., Fingar, D. C., Sabatini, D. M. & Blenis, J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol.13, 797–806 (2003). CASPubMed Google Scholar
Wullschleger, S., Loewith, R., Oppliger, W. & Hall, M. N. Molecular organization of target of rapamycin complex 2. J. Biol. Chem.280, 30697–30704 (2005). CASPubMed Google Scholar
Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science320, 1496–1501 (2008). CASPubMedPubMed Central Google Scholar
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell25, 903–915 (2007). CASPubMed Google Scholar
Pearce, L. R. et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J.405, 513–522 (2007). CASPubMedPubMed Central Google Scholar
Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol.9, 316–323 (2007). CASPubMed Google Scholar
Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol.16, 1865–1870 (2006). CASPubMed Google Scholar
Yang, Q., Inoki, K., Ikenoue, T. & Guan, K. L. Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev.20, 2820–2832 (2006). CASPubMedPubMed Central Google Scholar
Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell10, 457–468 (2002). CASPubMed Google Scholar
Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell137, 873–886 (2009). CASPubMedPubMed Central Google Scholar
Yip, C. K., Murata, K., Walz, T., Sabatini, D. M. & Kang, S. A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell38, 768–774 (2010). CASPubMedPubMed Central Google Scholar
Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol.6, 1122–1128 (2004). CASPubMed Google Scholar
Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22, 159–168 (2006). CASPubMed Google Scholar
Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nature Rev. Mol. Cell Biol.10, 307–318 (2009). Google Scholar
Haghighat, A., Mader, S., Pause, A. & Sonenberg, N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J.14, 5701–5709 (1995). CASPubMedPubMed Central Google Scholar
Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem.272, 26457–26463 (1997). CASPubMed Google Scholar
Wang, X. et al. Regulation of elongation factor 2 kinase by p90_RSK1_ and p70 S6 kinase. EMBO J.20, 4370–4379 (2001). CASPubMedPubMed Central Google Scholar
Ma, X. M., Yoon, S. O., Richardson, C. J., Julich, K. & Blenis, J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell133, 303–313 (2008). This study describes the function of SKAR as a scaffold that recruits S6K1 to newly synthesized mRNAs. CASPubMed Google Scholar
Wilson, K. F., Wu, W. J. & Cerione, R. A. Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex. J. Biol. Chem.275, 37307–37310 (2000). CASPubMed Google Scholar
Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell123, 569–580 (2005). This article describes the physical association of mTORC1 with untranslated mRNAs through its interaction with eIF3. CASPubMed Google Scholar
Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J.23, 1761–1769 (2004). CASPubMedPubMed Central Google Scholar
Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science314, 467–471 (2006). CASPubMed Google Scholar
Mayer, C., Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev.18, 423–434 (2004). CASPubMedPubMed Central Google Scholar
Claypool, J. A. et al. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol. Biol. Cell15, 946–956 (2004). CASPubMedPubMed Central Google Scholar
Martin, D. E., Soulard, A. & Hall, M. N. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell119, 969–979 (2004). CASPubMed Google Scholar
Schawalder, S. B. et al. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature432, 1058–1061 (2004). CASPubMed Google Scholar
Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem.273, 3963–3966 (1998). CASPubMed Google Scholar
Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem.284, 8023–8032 (2009). CASPubMedPubMed Central Google Scholar
Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol.150, 1507–1513 (2000). CASPubMedPubMed Central Google Scholar
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell20, 1981–1991 (2009). CASPubMedPubMed Central Google Scholar
Hosokawa, N. et al. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy5, 973–979 (2009). CASPubMed Google Scholar
Kamada, Y. et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell Biol.25, 7239–7248 (2005). CASPubMedPubMed Central Google Scholar
Schmidt, A., Bickle, M., Beck, T. & Hall, M. N. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell88, 531–542 (1997). CASPubMed Google Scholar
Facchinetti, V. et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J.27, 1932–1943 (2008). CASPubMedPubMed Central Google Scholar
Garcia-Martinez, J. M. & Alessi, D. R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J.416, 375–385 (2008). CASPubMed Google Scholar
Ikenoue, T., Inoki, K., Yang, Q., Zhou, X. & Guan, K. L. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J.27, 1919–1931 (2008). CASPubMedPubMed Central Google Scholar
Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307, 1098–1101 (2005). References 42–44 show that mTORC2 mediates the phosphorylation and activation of AGC family kinases. CASPubMed Google Scholar
Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell11, 859–871 (2006). CASPubMed Google Scholar
Soukas, A. A., Kane, E. A., Carr, C. E., Melo, J. A. & Ruvkun, G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev.23, 496–511 (2009). CASPubMedPubMed Central Google Scholar
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem.273, 14484–14494 (1998). CASPubMed Google Scholar
Wang, X., Campbell, L. E., Miller, C. M. & Proud, C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J.334, 261–267 (1998). CASPubMedPubMed Central Google Scholar
Christie, G. R., Hajduch, E., Hundal, H. S., Proud, C. G. & Taylor, P. M. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J. Biol. Chem.277, 9952–9957 (2002). CASPubMed Google Scholar
Findlay, G. M., Yan, L., Procter, J., Mieulet, V. & Lamb, R. F. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J.403, 13–20 (2007). CASPubMedPubMed Central Google Scholar
Yan, L. et al. PP2AT61ɛ is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol. Cell37, 633–642 (2010). CASPubMed Google Scholar
Gulati, P. et al. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab.7, 456–465 (2008). CASPubMedPubMed Central Google Scholar
Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA102, 14238–14243 (2005). CASPubMedPubMed Central Google Scholar
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biol.10, 935–945 (2008). References 10 and 55 describe the identification of the Rag GTPases as key mediators of amino acid signalling to mTORC1. Reference 10 also shows that amino acids regulate the subcellular localization of mTOR. CASPubMed Google Scholar
Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell141, 290–303 (2010). CASPubMedPubMed Central Google Scholar
Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol.5, 566–571 (2003). CASPubMed Google Scholar
Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nature Cell Biol.5, 559–565 (2003). CASPubMed Google Scholar
Binda, M. et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell35, 563–573 (2009). CASPubMed Google Scholar
Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. & De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell19, 15–26 (2005). CASPubMed Google Scholar
Zurita-Martinez, S. A., Puria, R., Pan, X., Boeke, J. D. & Cardenas, M. E. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics176, 2139–2150 (2007). CASPubMedPubMed Central Google Scholar
Urano, J., Tabancay, A. P., Yang, W. & Tamanoi, F. The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J. Biol. Chem.275, 11198–11206 (2000). CASPubMed Google Scholar
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol.4, 648–657 (2002). CASPubMed Google Scholar
Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell10, 151–162 (2002). CASPubMed Google Scholar
Potter, C. J., Pedraza, L. G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biol.4, 658–665 (2002). CASPubMed Google Scholar
Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell11, 1457–1466 (2003). CASPubMed Google Scholar
Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev.17, 1829–1834 (2003). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol.5, 578–581 (2003). CASPubMed Google Scholar
Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol.13, 1259–1268 (2003). CASPubMed Google Scholar
Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem.278, 10189–10194 (2003). CASPubMed Google Scholar
Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell121, 179–193 (2005). CASPubMed Google Scholar
Castilho, R. M., Squarize, C. H., Chodosh, L. A., Williams, B. O. & Gutkind, J. S. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell5, 279–289 (2009). This study shows that Wnt-induced hyperproliferation of epidermal stem cells requires mTORC1. CASPubMedPubMed Central Google Scholar
Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell126, 955–968 (2006). This article describes a crosstalk between Wnt and mTORC1 that is mediated by GSK3β-dependent phosphorylation of TSC2. CASPubMed Google Scholar
Gangloff, Y. G. et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell Biol.24, 9508–9516 (2004). CASPubMedPubMed Central Google Scholar
Murakami, M. et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell Biol.24, 6710–6718 (2004). CASPubMedPubMed Central Google Scholar
Dennis, P. B. et al. Mammalian TOR: a homeostatic ATP sensor. Science294, 1102–1105 (2001). CASPubMed Google Scholar
Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature Rev. Mol. Cell Biol.8, 774–785 (2007). CAS Google Scholar
Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A. & Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz–Jeghers syndrome. Genes Dev.18, 1533–1538 (2004). CASPubMedPubMed Central Google Scholar
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell30, 214–226 (2008). This study reports that AMPK directly inhibits mTORC1 by phosphorylating RAPTOR to induce its association with 14-3-3 proteins. CASPubMedPubMed Central Google Scholar
Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev.18, 2893–2904 (2004). CASPubMedPubMed Central Google Scholar
Reiling, J. H. & Hafen, E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev.18, 2879–2892 (2004). CASPubMedPubMed Central Google Scholar
DeYoung, M. P., Horak, P., Sofer, A., Sgroi, D. & Ellisen, L. W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev.22, 239–251 (2008). CASPubMedPubMed Central Google Scholar
Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1–AKT–mTOR pathways. Cancer Res.67, 3043–3053 (2007). CASPubMed Google Scholar
Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell18, 283–293 (2005). CASPubMed Google Scholar
Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell134, 451–460 (2008). CASPubMedPubMed Central Google Scholar
Charest, P. G. et al. A Ras signaling complex controls the RasC–TORC2 pathway and directed cell migration. Dev. Cell18, 737–749 (2010). CASPubMedPubMed Central Google Scholar
Lee, S. et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell16, 4572–4583 (2005). CASPubMedPubMed Central Google Scholar
Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell15, 1101–1111 (2004). CASPubMedPubMed Central Google Scholar
He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet.43, 67–93 (2009). CASPubMedPubMed Central Google Scholar
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature432, 1032–1036 (2004). CASPubMed Google Scholar
Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature465, 942–946 (2010). CASPubMedPubMed Central Google Scholar
Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell139, 149–160 (2009). This study shows that 4E-BP1 is upregulated on DR inD. melanogasterand enhances mitochondrial function and lifespan. CASPubMedPubMed Central Google Scholar
Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature450, 736–740 (2007). CASPubMed Google Scholar
Bentzinger, C. F. et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab.8, 411–424 (2008). CASPubMed Google Scholar
Polak, P. et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab.8, 399–410 (2008). CASPubMed Google Scholar
Yeh, W. C., Bierer, B. E. & McKnight, S. L. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc. Natl Acad. Sci. USA92, 11086–11090 (1995). CASPubMedPubMed Central Google Scholar
Gagnon, A., Lau, S. & Sorisky, A. Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion. J. Cell. Physiol.189, 14–22 (2001). CASPubMed Google Scholar
Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell79, 1147–1156 (1994). CASPubMed Google Scholar
Kim, J. E. & Chen, J. Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes53, 2748–2756 (2004). CASPubMed Google Scholar
Le Bacquer, O. et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest.117, 387–396 (2007). CASPubMedPubMed Central Google Scholar
Kim, J. B. & Spiegelman, B. M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev.10, 1096–1107 (1996). CASPubMed Google Scholar
Kim, J. B., Wright, H. M., Wright, M. & Spiegelman, B. M. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. Proc. Natl Acad. Sci. USA95, 4333–4337 (1998). CASPubMedPubMed Central Google Scholar
Zhang, H. H. et al. Insulin stimulates adipogenesis through the Akt–TSC2–mTORC1 pathway. PLoS ONE4, e6189 (2009). PubMedPubMed Central Google Scholar
Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab.8, 224–236 (2008). This report shows that SREBP is a key mediator of growth by promoting lipogenesis downstream of PI3K–Akt–mTORC1. CASPubMedPubMed Central Google Scholar
Dowell, P., Otto, T. C., Adi, S. & Lane, M. D. Convergence of peroxisome proliferator-activated receptor γ and Foxo1 signaling pathways. J. Biol. Chem.278, 45485–45491 (2003). CASPubMed Google Scholar
Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell4, 119–129 (2003). CASPubMed Google Scholar
Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. & Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378, 785–789 (1995). CASPubMed Google Scholar
Nakae, J., Kitamura, T., Silver, D. L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest.108, 1359–1367 (2001). CASPubMedPubMed Central Google Scholar
Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature423, 550–555 (2003). CASPubMed Google Scholar
Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature431, 200–205 (2004). CASPubMed Google Scholar
Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab.9, 311–326 (2009). CASPubMedPubMed Central Google Scholar
Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science312, 927–930 (2006). CASPubMed Google Scholar
Yuan, T. L. & Cantley, L. C. PI3K pathway alterations in cancer: variations on a theme. Oncogene27, 5497–5510 (2008). CASPubMedPubMed Central Google Scholar
Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science328, 1172–1176 (2010). CASPubMedPubMed Central Google Scholar
Hsieh, A. C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP–eIF4E. Cancer Cell17, 249–261 (2010). CASPubMedPubMed Central Google Scholar
Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature428, 332–337 (2004). CASPubMed Google Scholar
Petroulakis, E. et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell16, 439–446 (2009). References 116–119 demonstrate a key role for 4E-BP1-mediated translational control in the proliferation and survival of cancer cells. CASPubMed Google Scholar
She, Q. B. et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell18, 39–51 (2010). CASPubMedPubMed Central Google Scholar
Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Rev. Cancer7, 763–777 (2007). CASPubMed Google Scholar
Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest.112, 1809–1820 (2003). CASPubMedPubMed Central Google Scholar
Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA100, 15077–15082 (2003). CASPubMedPubMed Central Google Scholar
Marino, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem.282, 18573–18583 (2007). CASPubMed Google Scholar
Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Med.12, 122–127 (2006). CASPubMed Google Scholar
Hsu, P. P. & Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell134, 703–707 (2008). CASPubMed Google Scholar
Guertin, D. A. et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell15, 148–159 (2009). CASPubMedPubMed Central Google Scholar
Hietakangas, V. & Cohen, S. M. TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells. BMC Cancer8, 282 (2008). PubMedPubMed Central Google Scholar
Hoang, B. et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood116, 4560–4568 (2010). CASPubMedPubMed Central Google Scholar
Masri, J. et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res.67, 11712–11720 (2007). CASPubMed Google Scholar
O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res.66, 1500–1508 (2006). CASPubMedPubMed Central Google Scholar
Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest.118, 3065–3074 (2008). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Invest.117, 730–738 (2007). CASPubMedPubMed Central Google Scholar
Efeyan, A. & Sabatini, D. M. mTOR and cancer: many loops in one pathway. Curr. Opin. Cell Biol.22, 169–176 (2010). CASPubMed Google Scholar
Shor, B. et al. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res.68, 2934–2943 (2008). CASPubMed Google Scholar
Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA105, 17414–17419 (2008). CASPubMedPubMed Central Google Scholar
McMahon, L. P., Choi, K. M., Lin, T. A., Abraham, R. T. & Lawrence, J. C. Jr. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol. Cell Biol.22, 7428–7438 (2002). CASPubMedPubMed Central Google Scholar
Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol.7, e38 (2009). PubMed Google Scholar
Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res.70, 288–298 (2010). CASPubMed Google Scholar
Garcia-Martinez, J. M. et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J.421, 29–42 (2009). CASPubMed Google Scholar
Yu, K. et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res.69, 6232–6240 (2009). References 35 and 138–141 report the synthesis of catalytic inhibitors of mTOR. CASPubMed Google Scholar
Nardella, C. et al. Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci. Signal.2, ra2 (2009). PubMedPubMed Central Google Scholar
Janes, M. R. et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Med.16, 205–213 (2010). This study details the efficacy of mTOR catalytic inhibitors in mouse and human models of leukaemia. CASPubMed Google Scholar
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med.14, 1351–1356 (2008). CASPubMed Google Scholar
Fan, Q. W. et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell9, 341–349 (2006). CASPubMedPubMed Central Google Scholar
Liu, T. J. et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol. Cancer Ther.8, 2204–2210 (2009). CASPubMedPubMed Central Google Scholar
Brachmann, S. M. et al. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc. Natl Acad. Sci. USA106, 22299–22304 (2009). CASPubMedPubMed Central Google Scholar
Chiarini, F. et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res.69, 3520–3528 (2009). CASPubMed Google Scholar
Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science292, 288–290 (2001). CASPubMed Google Scholar
Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science310, 1193–1196 (2005). This article provides evidence that reducing the activity of the TOR pathway extends the lifespan ofS. cerevisiaeand that DR acts through TOR. CASPubMed Google Scholar
Jia, K., Chen, D. & Riddle, D. L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development131, 3897–3906 (2004). CASPubMed Google Scholar
Vellai, T. et al. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature426, 620 (2003). CASPubMed Google Scholar
Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab.11, 35–46 (2010). CASPubMedPubMed Central Google Scholar
Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol.14, 885–890 (2004). CASPubMedPubMed Central Google Scholar
Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature460, 392–395 (2009). The first report that mTOR inhibition has beneficial effects on the lifespan of mammals. CASPubMedPubMed Central Google Scholar
Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science326, 140–144 (2009). CASPubMedPubMed Central Google Scholar
Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell6, 95–110 (2007). CASPubMed Google Scholar
Pan, K. Z. et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell6, 111–119 (2007). CASPubMed Google Scholar
Steffen, K. K. et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell133, 292–302 (2008). CASPubMedPubMed Central Google Scholar
Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature445, 922–926 (2007). CASPubMed Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet.36, 585–595 (2004). CASPubMed Google Scholar
Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet.4, e24 (2008). PubMedPubMed Central Google Scholar
Toth, M. L. et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy4, 330–338 (2008). CASPubMed Google Scholar
Zhang, C. & Cuervo, A. M. Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nature Med.14, 959–965 (2008). CASPubMed Google Scholar
Wei, M. et al. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet.4, e13 (2008). PubMedPubMed Central Google Scholar
He, S., Nakada, D. & Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol.25, 377–406 (2009). CASPubMed Google Scholar
Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature443, 421–426 (2006). CASPubMed Google Scholar
Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature443, 448–452 (2006). CASPubMedPubMed Central Google Scholar
Chen, C., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal.2, ra75 (2009). PubMedPubMed Central Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006). CASPubMed Google Scholar
Grandison, R. C., Piper, M. D. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature462, 1061–1064 (2009). CASPubMedPubMed Central Google Scholar
Flinn, R. J. & Backer, J. M. mTORC1 signals from late endosomes: taking a TOR of the endocytic system. Cell Cycle9, 1869–1870 (2010). CASPubMed Google Scholar
Li, L., Edgar, B. A. & Grewal, S. S. Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel _cis_-regulatory element. BMC Cell Biol.11, 7 (2010). PubMedPubMed Central Google Scholar
Berchtold, D. & Walther, T. C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell20, 1565–1575 (2009). CASPubMedPubMed Central Google Scholar