Building strong bones: molecular regulation of the osteoblast lineage (original) (raw)
Razzaque, M. S. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nature Rev. Endocrinol.5, 611–619 (2009). CAS Google Scholar
Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). CASPubMed Google Scholar
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). CASPubMed Google Scholar
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). CASPubMed Google Scholar
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25, 977–988 (2006). CASPubMed Google Scholar
Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell142, 296–308 (2010). CASPubMedPubMed Central Google Scholar
Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell142, 309–319 (2010). CASPubMedPubMed Central Google Scholar
Pritchard, J. J. A cytological and histochemical study of bone and cartilage formation in the rat. J. Anat.86, 259–277 (1952). CASPubMedPubMed Central Google Scholar
Bonewald, L. F. The amazing osteocyte. J. Bone Miner. Res.26, 229–238 (2011). CASPubMed Google Scholar
van Bezooijen, R. L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med.199, 805–814 (2004). CASPubMedPubMed Central Google Scholar
Bellido, T. et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology146, 4577–4583 (2005). CASPubMed Google Scholar
Robling, A. G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem.283, 5866–5875 (2008). CASPubMed Google Scholar
Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone37, 148–158 (2005). CASPubMed Google Scholar
Powell, W. F. Jr. et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J. Endocrinol.209, 21–32 (2011). CASPubMedPubMed Central Google Scholar
Krause, C. et al. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J. Biol. Chem.285, 41614–41626 (2010). CASPubMedPubMed Central Google Scholar
Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem.280, 19883–19887 (2005). CASPubMed Google Scholar
Semenov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem.280, 26770–26775 (2005). CASPubMed Google Scholar
Olsen, B. R., Reginato, A. M. & Wang, W. Bone development. Annu. Rev. Cell Dev. Biol.16, 191–220 (2000). CASPubMed Google Scholar
Kronenberg, H. M. Developmental regulation of the growth plate. Nature423, 332–336 (2003). CASPubMed Google Scholar
Maes, C. et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev. Cell19, 329–344 (2010). CASPubMedPubMed Central Google Scholar
Bianco, P., Riminucci, M., Gronthos, S. & Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells19, 180–192 (2001). CASPubMed Google Scholar
Friedenstein, A. J. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol. Blood Transfus.25, 19–29 (1980). CASPubMed Google Scholar
Owen, M. & Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp.136, 42–60 (1988). CASPubMed Google Scholar
Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science284, 143–147 (1999). CASPubMed Google Scholar
Kuznetsov, S. A. et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res.12, 1335–1347 (1997). CASPubMed Google Scholar
Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell131, 324–336 (2007). CASPubMed Google Scholar
Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med.206, 2483–2496 (2009). CASPubMedPubMed Central Google Scholar
Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466, 829–834 (2010). CASPubMedPubMed Central Google Scholar
Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell2, 313–319 (2008). CASPubMedPubMed Central Google Scholar
Nombela-Arrieta, C., Ritz, J. & Silberstein, L. E. The elusive nature and function of mesenchymal stem cells. Nature Rev. Mol. Cell Biol.12, 126–131 (2011). CAS Google Scholar
Pignolo, R. J. & Kassem, M. Circulating osteogenic cells: implications for injury, repair, and regeneration. J. Bone Miner. Res.26, 1685–1693 (2011). CASPubMed Google Scholar
Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R. & de Crombrugghe, B. Sox9 is required for cartilage formation. Nature Genet.22, 85–89 (1999). CASPubMed Google Scholar
Bi, W. et al. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc. Natl Acad. Sci. USA98, 6698–6703 (2001). CASPubMedPubMed Central Google Scholar
Kist, R., Schrewe, H., Balling, R. & Scherer, G. Conditional inactivation of Sox9: a mouse model for campomelic dysplasia. Genesis32, 121–123 (2002). CASPubMed Google Scholar
Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A. & de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev.16, 2813–2828 (2002). CASPubMedPubMed Central Google Scholar
Akiyama, H. et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc. Natl Acad. Sci. USA102, 14665–14670 (2005). CASPubMed Google Scholar
Mori-Akiyama, Y., Akiyama, H., Rowitch, D. H. & de Crombrugghe, B. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc. Natl Acad. Sci. USA100, 9360–9365 (2003). CASPubMedPubMed Central Google Scholar
Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell89, 755–764 (1997). CASPubMed Google Scholar
Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell89, 765–771 (1997). CASPubMed Google Scholar
Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell89, 773–779 (1997). CASPubMed Google Scholar
Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet.16, 307–310 (1997). CASPubMed Google Scholar
Choi, J. Y. et al. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc. Natl Acad. Sci. USA98, 8650–8655 (2001). CASPubMedPubMed Central Google Scholar
Ducy, P. et al. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev.13, 1025–1036 (1999). CASPubMedPubMed Central Google Scholar
Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest.120, 3455–3465 (2010). CASPubMedPubMed Central Google Scholar
Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science309, 1074–1078 (2005). CASPubMed Google Scholar
Cui, C. B., Cooper, L. F., Yang, X., Karsenty, G. & Aukhil, I. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol. Cell. Biol.23, 1004–1013 (2003). CASPubMedPubMed Central Google Scholar
Dobreva, G. et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell125, 971–986 (2006). CASPubMed Google Scholar
Satokata, I. et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genet.24, 391–395 (2000). CASPubMed Google Scholar
Tribioli, C. & Lufkin, T. The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development126, 5699–5711 (1999). CASPubMed Google Scholar
Thomas, D. M. et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell8, 303–316 (2001). CASPubMed Google Scholar
Shimoyama, A. et al. Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol. Biol. Cell18, 2411–2418 (2007). CASPubMedPubMed Central Google Scholar
Lee, M. H. et al. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J. Biol. Chem.280, 35579–35587 (2005). CASPubMed Google Scholar
Robledo, R. F., Rajan, L., Li, X. & Lufkin, T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev.16, 1089–1101 (2002). CASPubMedPubMed Central Google Scholar
Bialek, P. et al. A twist code determines the onset of osteoblast differentiation. Dev. Cell6, 423–435 (2004). CASPubMed Google Scholar
Funato, N. et al. Hand2 controls osteoblast differentiation in the branchial arch by inhibiting DNA binding of Runx2. Development136, 615–625 (2009). CASPubMed Google Scholar
Kim, S. et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev.17, 1979–1991 (2003). CASPubMedPubMed Central Google Scholar
Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science312, 1223–1227 (2006). CASPubMed Google Scholar
Hesse, E. et al. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. J. Cell Biol.191, 1271–1283 (2010). CASPubMedPubMed Central Google Scholar
Kanzler, B., Kuschert, S. J., Liu, Y. H. & Mallo, M. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development125, 2587–2597 (1998). CASPubMed Google Scholar
Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature437, 270–274 (2005). CASPubMed Google Scholar
Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nature Med.14, 306–314 (2008). CASPubMed Google Scholar
Ohba, S. et al. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev. Cell14, 689–699 (2008). CASPubMed Google Scholar
Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell119, 555–566 (2004). CASPubMed Google Scholar
Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002). CASPubMed Google Scholar
Zhou, X. et al. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice. Proc. Natl Acad. Sci. USA107, 12919–12924 (2010). CASPubMedPubMed Central Google Scholar
Wang, X. et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J. Cell Biol.172, 115–125 (2006). CASPubMedPubMed Central Google Scholar
Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nature Med.11, 880–885 (2005). CASPubMed Google Scholar
Winslow, M. M. et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell10, 771–782 (2006). CASPubMed Google Scholar
Yu, V. W. et al. FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice. J. Cell Biol.169, 591–601 (2005). CASPubMedPubMed Central Google Scholar
Yang, X. et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry Syndrome. Cell117, 387–398 (2004). CASPubMed Google Scholar
Elefteriou, F. et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab.4, 441–451 (2006). CASPubMedPubMed Central Google Scholar
Elefteriou, F. et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature434, 514–520 (2005). CASPubMed Google Scholar
Ambrogini, E. et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab.11, 136–146 (2010). CASPubMedPubMed Central Google Scholar
Rached, M. T. et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab.11, 147–160 (2010). CASPubMedPubMed Central Google Scholar
Wang, W. et al. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development136, 4143–4153 (2009). CASPubMedPubMed Central Google Scholar
Eferl, R. et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J.23, 2789–2799 (2004). CASPubMedPubMed Central Google Scholar
Jochum, W. et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Med.6, 980–984 (2000). CASPubMed Google Scholar
Kveiborg, M. et al. ΔFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms. Mol. Cell. Biol.24, 2820–2830 (2004). CASPubMedPubMed Central Google Scholar
Sabatakos, G. et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nature Med.6, 985–990 (2000). CASPubMed Google Scholar
Kenner, L. et al. Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J. Cell Biol.164, 613–623 (2004). CASPubMedPubMed Central Google Scholar
Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev.15, 3059–3087 (2001). CASPubMed Google Scholar
Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development124, 113–123 (1997). CASPubMed Google Scholar
Bai, C. B., Auerbach, W., Lee, J. S., Stephen, D. & Joyner, A. L. Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development129, 4753–4761 (2002). CASPubMed Google Scholar
St-Jacques, B., Hammerschmidt, M. & McMahon, A. P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev.13, 2072–2086 (1999). CASPubMedPubMed Central Google Scholar
Long, F. et al. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development131, 1309–1318 (2004). CASPubMed Google Scholar
Tu, X., Joeng, K. S. & Long, F. Indian hedgehog requires additional effectors besides Runx2 to induce osteoblast differentiation. Dev. Biol. 1 Dec 2011 (doi:10.1016/j.ydbio.2011.11.013). CASPubMed Google Scholar
Joeng, K. S. & Long, F. The Gli2 transcriptional activator is a crucial effector for Ihh signaling in osteoblast development and cartilage vascularization. Development136, 4177–4185 (2009). CASPubMedPubMed Central Google Scholar
Hilton, M. J., Tu, X., Cook, J., Hu, H. & Long, F. Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development132, 4339–4351 (2005). CASPubMed Google Scholar
Maeda, Y. et al. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. Proc. Natl Acad. Sci. USA104, 6382–6387 (2007). CASPubMedPubMed Central Google Scholar
Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell13, 249–260 (2008). CASPubMed Google Scholar
Mak, K. K. et al. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev. Cell14, 674–688 (2008). CASPubMed Google Scholar
Kopan, R. & Goate, A. A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev.14, 2799–2806 (2000). CASPubMed Google Scholar
Donoviel, D. B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev.13, 2801–2810 (1999). CASPubMedPubMed Central Google Scholar
Herreman, A. et al. Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc. Natl Acad. Sci. USA96, 11872–11877 (1999). CASPubMedPubMed Central Google Scholar
Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature393, 382–386 (1998). CASPubMed Google Scholar
Honjo, T. The shortest path from the surface to the nucleus: RBP-Jκ/Su(H) transcription factor. Genes Cells1, 1–9 (1996). CASPubMed Google Scholar
Mohamed, S. A. et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun.345, 1460–1465 (2006). CASPubMed Google Scholar
Simpson, M. A. et al. Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nature Genet.43, 303–305 (2011). CASPubMed Google Scholar
Isidor, B. et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nature Genet.43, 306–308 (2011). CASPubMed Google Scholar
Salie, R. et al. Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone46, 680–694 (2010). CASPubMed Google Scholar
Zanotti, S. et al. Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology149, 3890–3899 (2008). CASPubMedPubMed Central Google Scholar
Engin, F. et al. Dimorphic effects of Notch signaling in bone homeostasis. Nature Med.14, 299–305 (2008). CASPubMed Google Scholar
Tao, J. et al. Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. J. Bone Miner. Res.25, 2175–2183 (2010). CASPubMedPubMed Central Google Scholar
Engin, F. et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum. Mol. Genet.18, 1464–1470 (2009). CASPubMedPubMed Central Google Scholar
Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev.11, 547–553 (2001). CASPubMed Google Scholar
Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell5, 367–377 (2003). CASPubMed Google Scholar
Wu, X. et al. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell133, 340–353 (2008). CASPubMedPubMed Central Google Scholar
Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107, 513–523 (2001). CASPubMed Google Scholar
Boyden, L. M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002). CASPubMed Google Scholar
Little, R. D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70, 11–19 (2002). CASPubMed Google Scholar
Ai, M., Holmen, S. L., Van Hul, W., Williams, B. O. & Warman, M. L. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol. Cell. Biol.25, 4946–4955 (2005). CASPubMedPubMed Central Google Scholar
Semenov, M. V. & He, X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J. Biol. Chem.281, 38276–38284 (2006). CASPubMed Google Scholar
Ellies, D. L. et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res.21, 1738–1749 (2006). CASPubMed Google Scholar
Balemans, W. et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet.10, 537–543 (2001). CASPubMed Google Scholar
Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet.39, 91–97 (2002). CASPubMedPubMed Central Google Scholar
Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet.68, 577–589 (2001). CASPubMedPubMed Central Google Scholar
Staehling-Hampton, K. et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am. J. Med. Genet.110, 144–152 (2002). PubMed Google Scholar
Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol.157, 303–314 (2002). CASPubMedPubMed Central Google Scholar
Bennett, C. N. et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl Acad. Sci. USA102, 3324–3329 (2005). CASPubMedPubMed Central Google Scholar
Holmen, S. L. et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J. Bone Miner. Res.19, 2033–2040 (2004). CASPubMed Google Scholar
Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nature Med.17, 684–691 (2011). CASPubMed Google Scholar
Yadav, V. K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell135, 825–837 (2008). CASPubMedPubMed Central Google Scholar
Glass, D. A., 2nd. et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell8, 751–764 (2005). CASPubMed Google Scholar
Holmen, S. L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem.280, 21162–21168 (2005). CASPubMed Google Scholar
Yadav, V. K., Arantes, H. P., Barros, E. R., Lazaretti-Castro, M. & Ducy, P. Genetic analysis of Lrp5 function in osteoblast progenitors. Calcif. Tissue Int.86, 382–388 (2010). CASPubMed Google Scholar
Frost, M. et al. Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high-bone-mass phenotype due to a mutation in Lrp5. J. Bone Miner. Res.26, 1721–1728 (2011). CASPubMed Google Scholar
Yadav, V. K. et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nature Med.16, 308–312 (2010). CASPubMed Google Scholar
Inose, H. et al. Efficacy of serotonin inhibition in mouse models of bone loss. J. Bone Miner. Res.26, 2002–2011 (2011). CASPubMed Google Scholar
Hu, H. et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development132, 49–60 (2005). CASPubMed Google Scholar
Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development133, 3231–3244 (2006). CASPubMed Google Scholar
Day, T. F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell8, 739–750 (2005). CASPubMed Google Scholar
Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell8, 727–738 (2005). CASPubMed Google Scholar
Joeng, K. S., Schumacher, C. A., Zylstra-Diegel, C. R., Long, F. & Williams, B. O. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev. Biol.359, 222–229 (2011). CASPubMedPubMed Central Google Scholar
Mak, K. K., Chen, M. H., Day, T. F., Chuang, P. T. & Yang, Y. Wnt/β-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development133, 3695–3707 (2006). CASPubMed Google Scholar
Tu, X. et al. Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev. Cell12, 113–127 (2007). CASPubMedPubMed Central Google Scholar
Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nature Cell Biol.9, 1273–1285 (2007). CASPubMed Google Scholar
Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science289, 950–953 (2000). CASPubMed Google Scholar
Albers, J. et al. Control of bone formation by the serpentine receptor Frizzled-9. J. Cell Biol.192, 1057–1072 (2011). CASPubMedPubMed Central Google Scholar
Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol.21, 659–693 (2005). CASPubMed Google Scholar
Bandyopadhyay, A. et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet.2, e216 (2006). PubMedPubMed Central Google Scholar
Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nature Genet.38, 1424–1429 (2006). CASPubMed Google Scholar
Kamiya, N. et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development135, 3801–3811 (2008). CASPubMed Google Scholar
Kamiya, N. et al. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J. Bone Miner. Res.23, 2007–2017 (2008). CASPubMedPubMed Central Google Scholar
Kamiya, N. et al. Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. J. Bone Miner. Res.25, 200–210 (2010). CASPubMed Google Scholar
Mishina, Y. et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J. Biol. Chem.279, 27560–27566 (2004). CASPubMed Google Scholar
Devlin, R. D. et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology144, 1972–1978 (2003). CASPubMed Google Scholar
Tan, X. et al. Smad4 is required for maintaining normal murine postnatal bone homeostasis. J. Cell Sci.120, 2162–2170 (2007). CASPubMed Google Scholar
Daluiski, A. et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nature Genet.27, 84–88 (2001). CASPubMed Google Scholar
Kokabu, S. et al. BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol. Endocrinol. 10 Nov 2011 (doi:10.1210/me.2011-1168). CASPubMed Google Scholar
Itoh, N. & Ornitz, D. M. Functional evolutionary history of the mouse Fgf gene family. Dev. Dyn.237, 18–27 (2008). CASPubMed Google Scholar
Eswarakumar, V. P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev.16, 139–149 (2005). CASPubMed Google Scholar
Ornitz, D. M. & Marie, P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev.16, 1446–1465 (2002). CASPubMed Google Scholar
Montero, A. et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J. Clin. Invest.105, 1085–1093 (2000). CASPubMedPubMed Central Google Scholar
Liu, Z., Lavine, K. J., Hung., I. H. & Ornitz, D. M. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev. Biol.302, 80–91 (2007). CASPubMed Google Scholar
Ohbayashi, N. et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev.16, 870–879 (2002). CASPubMedPubMed Central Google Scholar
Jacob, A. L., Smith, C., Partanen, J. & Ornitz, D. M. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev. Biol.296, 315–328 (2006). CASPubMedPubMed Central Google Scholar
Yu, K. et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development130, 3063–3074 (2003). CASPubMed Google Scholar
Eswarakumar, V. P. et al. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development129, 3783–3793 (2002). CASPubMed Google Scholar
Eswarakumar, V. P., Horowitz, M. C., Locklin, R., Morriss-Kay, G. M. & Lonai, P. A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc. Natl Acad. Sci. USA101, 12555–12560 (2004). CASPubMedPubMed Central Google Scholar
Valverde-Franco, G. et al. Defective bone mineralization and osteopenia in young adult FGFR3−/− mice. Hum. Mol. Genet.13, 271–284 (2004). CASPubMed Google Scholar
Liu, F., Malaval, L. & Aubin, J. E. The mature osteoblast phenotype is characterized by extensive plasticity. Exp. Cell Res.232, 97–105 (1997). CASPubMed Google Scholar
Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell100, 197–207 (2000). CASPubMed Google Scholar
Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell111, 305–317 (2002). CASPubMed Google Scholar
Yadav, V. K. et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell138, 976–989 (2009). CASPubMedPubMed Central Google Scholar
Williams, G. A. et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J. Bone Miner. Res.26, 1698–1709 (2011). CASPubMed Google Scholar
Thomas, T. et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology140, 1630–1638 (1999). CASPubMed Google Scholar
Cornish, J. et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol.175, 405–415 (2002). CASPubMed Google Scholar
Shi, Y. et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl Acad. Sci. USA105, 20529–20533 (2008). CASPubMedPubMed Central Google Scholar
Nissenson, R. A. & Juppner, H. in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed. Rosen, C. J.) (Wiley, 2008). Google Scholar
Tam, C. S., Heersche, J. N., Murray, T. M. & Parsons, J. A. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology110, 506–512 (1982). CASPubMed Google Scholar
Yakar, S. et al. The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. J. Endocrinol.189, 289–299 (2006). CASPubMed Google Scholar
Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab.11, 161–171 (2010). CASPubMedPubMed Central Google Scholar
Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med.349, 1207–1215 (2003). CASPubMed Google Scholar
Wu, X. et al. Inhibition of Sca-1-positive skeletal stem cell recruitment by alendronate blunts the anabolic effects of parathyroid hormone on bone remodeling. Cell Stem Cell7, 571–580 (2010). CASPubMedPubMed Central Google Scholar
Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Med.15, 757–765 (2009). CASPubMed Google Scholar
Giustina, A., Mazziotti, G. & Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev.29, 535–559 (2008). CASPubMedPubMed Central Google Scholar
DiGirolamo, D. J. et al. Mode of growth hormone action in osteoblasts. J. Biol. Chem.282, 31666–31674 (2007). CASPubMed Google Scholar
Zhang, M. et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J. Biol. Chem.277, 44005–44012 (2002). CASPubMed Google Scholar
Zhao, G. et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology141, 2674–2682 (2000). CASPubMed Google Scholar
Kawano, H. et al. Suppressive function of androgen receptor in bone resorption. Proc. Natl Acad. Sci. USA100, 9416–9421 (2003). CASPubMedPubMed Central Google Scholar
Venken, K. et al. Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model. J. Bone Miner. Res.21, 576–585 (2006). CASPubMed Google Scholar
Sims, N. A. et al. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J. Clin. Invest.111, 1319–1327 (2003). CASPubMedPubMed Central Google Scholar
Vidal, O. et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl Acad. Sci. USA97, 5474–5479 (2000). CASPubMedPubMed Central Google Scholar
Syed, F. A., Fraser, D. G., Monroe, D. G. & Khosla, S. Distinct effects of loss of classical estrogen receptor signaling versus complete deletion of estrogen receptor α on bone. Bone49, 208–216 (2011). CASPubMedPubMed Central Google Scholar