Wolken, J. J. & Palade, G. E. Fine structure of chloroplasts in two flagellates. Nature170, 114–115 (1952). ArticleCASPubMed Google Scholar
Wolken, J. J. & Palade, G. E. An electron microscope study of two flagellates, chloroplast structure and variation. Ann. NY Acad. Sci.56, 873–889 (1953). ArticleCASPubMed Google Scholar
Palade, G. E. Intracellular aspects of the process of protein secretion. Nobelprize.org[online], (1974).
Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature422, 216–225 (2003). ArticleCASPubMed Google Scholar
Ben-Harush, K., Maimon, T., Patla, I., Villa, E. & Medalia, O. Visualizing cellular processes at the molecular level by cryo-electron tomography. J. Cell Sci.123, 7–12 (2010). ArticleCASPubMed Google Scholar
Pilhofer, M., Ladinsky, M. S., McDowall, A. W. & Jensen, G. J. in Methods in Cell Biology (ed. Thomas, M.-R.) 21–45 (Academic Press, 2010). Google Scholar
Dutcher, S. K. Finding treasures in frozen cells: new centriole intermediates. Bioessays29, 630–634 (2007). ArticleCASPubMed Google Scholar
Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 ångstrom resolution. Science292, 1863–1876 (2001). ArticleCASPubMed Google Scholar
van der Feltz, C., Anthony, K., Brilot, A. & Pomeranz Krummel, D. A. Architecture of the spliceosome. Biochemistry51, 3321–3333 (2012). ArticleCASPubMed Google Scholar
Bochtler, M., Ditzel, L., Groll, M., Hartmann, C. & Huber, R. The proteasome. Annu. Rev. Biophys. Biomol. Struct.28, 295–317 (1999). ArticleCASPubMed Google Scholar
Korostelev, A. & Noller, H. F. The ribosome in focus: new structures bring new insights. Trends Biochem. Sci.32, 434–441 (2007). ArticleCASPubMed Google Scholar
Yahav, T., Maimon, T., Grossman, E., Dahan, I. & Medalia, O. Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr. Opin. Struct. Biol.21, 670–677 (2011). ArticleCASPubMed Google Scholar
Mader, A., Elad, N. & Medalia, O. Cryoelectron tomography of eukaryotic cells. Methods Enzymol.483, 245–265 (2010). ArticleCASPubMed Google Scholar
Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science298, 1209–1213 (2002). ArticleCASPubMed Google Scholar
Chang J., Liu, X., Rochat, R. H., Baker, M. L., Chiu, W. Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Adv. Exp. Med. Biol.726, 49–90 (2012) ArticleCASPubMedPubMed Central Google Scholar
Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys.21, 129–228 (1988). ArticleCASPubMed Google Scholar
McDonald, K. L. A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J. Microsc.235, 273–281 (2009). ArticleCASPubMed Google Scholar
Hsieh, C. E., Marko, M., Frank, J. & Mannella, C. A. Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol.138, 63–73 (2002). ArticlePubMed Google Scholar
Al-Amoudi, A., Norlen, L. P. & Dubochet, J. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol.148, 131–135 (2004). ArticleCASPubMed Google Scholar
Bokstad, M., Sabanay, H., Dahan, I., Geiger, B. & Medalia, O. Reconstructing adhesion structures in tissues by cryo-electron tomography of vitrified frozen sections. J Struct. Biol178, 76–83 (2011). ArticlePubMed Google Scholar
Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nature Methods4, 215–217 (2007). ArticleCASPubMed Google Scholar
Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA109, 4449–4454 (2012). ArticlePubMedPubMed Central Google Scholar
Frank, J. in Electron tomography (ed. Frank, J), 1–13 (Plenum Press, 1992). Book Google Scholar
Radermacher, M. in Electron tomography (ed. Frank, J), 91–115 (Plenum Press, 1992). Book Google Scholar
Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol.120, 276–308 (1997). ArticleCASPubMed Google Scholar
Frank, J. et al. Three-dimensional imaging of biological complexity. J. Struct. Biol.138, 85–91 (2002). ArticlePubMed Google Scholar
Dierksen, K., Typke, D., Hegerl, R. & Baumeister, W. Towards automatic electron tomography II. Implementation of autofocus and low-dose procedures. Ultramicroscopy49, 109–120 (1993). Article Google Scholar
Dierksen, K., Typke, D., Hegerl, R., Koster, A. J. & Baumeister, W. Towards automatic electron tomography. Ultramicroscopy40, 71–87 (1992). Article Google Scholar
Grimm, R., Koster, A. J., Ziese, U., Typke, D. & Baumeister, W. Zero-loss energy filtering under low-dose conditions using a post-column energy filter. J. Microsc.183, 60–68 (1996). ArticleCAS Google Scholar
Förster, F. Medalia, O., Zauberman, N., Baumeister, W., Fass, D. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA102, 4729–4734 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, S., Fernandez, J.-J., Marshall, W. F. & Agard, D. A. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J.31, 552–562 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kourˇil, R., Oostergetel, G. T. & Boekema, E. J. Fine structure of granal thylakoid membrane organization using cryo electron tomography. Biochim. Biophys. Acta1807, 368–374 (2011). ArticleCAS Google Scholar
Bartesaghi, A. & Subramaniam, S. Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr. Opin. Struct. Biol.19, 402–407 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schmid, M. F. & Booth, C. R. Methods for aligning and for averaging 3D volumes with missing data. J. Struct. Biol.161, 243–248 (2008). ArticlePubMed Google Scholar
Bartesaghi, A. et al. Classification and 3D averaging with missing wedge correction in biological electron tomography. J. Struct. Biol.162, 436–450 (2008). ArticleCASPubMedPubMed Central Google Scholar
Al-Amoudi, A., Diez, D. C., Betts, M. J. & Frangakis, A. S. The molecular architecture of cadherins in native epidermal desmosomes. Nature450, 832–837 (2007). ArticleCASPubMed Google Scholar
Castaño-Díez, D., Al-Amoudi, A., Glynn, A. M., Seybert, A. & Frangakis, A. S. Fiducial-less alignment of cryo-sections. J. Struct. Biol.159, 413–423 (2007). ArticlePubMed Google Scholar
Gruska, M., Medalia, O., Baumeister, W. & Leis, A. Electron tomography of vitreous sections from cultured mammalian cells. J. Struct. Biol.161, 384–392 (2008). ArticleCASPubMed Google Scholar
Al-Amoudi, A., Studer, D. & Dubochet, J. Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol.150, 109–121 (2005). ArticleCASPubMed Google Scholar
Salje, J., Zuber, B. & Lowe, J. Electron cryomicroscopy of E. coli reveals filament bundles involved in plasmid DNA segregation. Science323, 509–512 (2009). ArticleCASPubMed Google Scholar
Lieber, A., Leis, A., Kushmaro, A., Minsky, A. & Medalia, O. Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus. J. Bacteriol.191, 1439–1445 (2009). ArticleCASPubMed Google Scholar
Gobbi, P. et al. Scanning electron microscopic detection of nuclear structures involved in DNA replication. Arch. Histol. Cytol.62, 317–326 (1999). ArticleCASPubMed Google Scholar
Giannuzzi, L. A. & Stevie, F. A. Introduction to focused ion beams: instrumentation, theory, techniques and practice (Springer, 2005).
Elad, N., Abramovitch, S., Sabanay, H. & Medalia, O. Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. J. Cell Sci.124, 207–215 (2011). ArticleCASPubMed Google Scholar
Maurer, U. E., Sodeik, B. & Grunewald, K. Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc. Natl Acad. Sci. USA105, 10559–10564 (2008). ArticlePubMedPubMed Central Google Scholar
Cyrklaff, M. et al. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science334, 1283–1286 (2011). ArticleCASPubMed Google Scholar
Grossman, E., Medalia, O. & Zwerger, M. Functional architecture of the nuclear pore complex. Ann. Rev. Biophys.41, 557–584 (2012). ArticleCAS Google Scholar
Elad, N., Maimon, T., Frenkiel-Krispin, D., Lim, R. Y. & Medalia, O. Structural analysis of the nuclear pore complex by integrated approaches. Curr. Opin. Struct. Biol.19, 226–232 (2009). ArticleCASPubMed Google Scholar
Rout, M. P. & Blobel, G. Isolation of the yeast nuclear pore complex. J. Cell Biol.123, 771–783 (1993). ArticleCASPubMed Google Scholar
Reichelt, R. et al. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol.110, 883–894 (1990). ArticleCASPubMed Google Scholar
Callan, H. G. & Tomlin, S. G. Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc. R. Soc. Lond. B Biol. Sci.137, 367–378 (1950). ArticleCASPubMed Google Scholar
Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol.248, 273–293 (1995). CASPubMed Google Scholar
Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol.122, 1–19 (1993). ArticleCASPubMed Google Scholar
Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science306, 1387–1390 (2004). ArticleCASPubMed Google Scholar
Stoffler, D. et al. Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol.328, 119–130 (2003). ArticleCASPubMed Google Scholar
Frenkiel-Krispin, D., Maco, B., Aebi, U. & Medalia, O. Structural analysis of a metazoan nuclear pore complex reveals a fused concentric ring architecture. J. Mol. Biol.395, 578–586 (2010). ArticleCASPubMed Google Scholar
Maimon, T., Elad, N., Dahan, I. & Medalia, O. The human nuclear pore complex as revealed by cryo-electron tomography. Structure20, 998–1006 (2012). ArticleCASPubMed Google Scholar
Beck, M., Lucic, V., Forster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature449, 611–615 (2007). ArticleCASPubMed Google Scholar
Winey, M., Yarar, D., Giddings, T. H. Jr & Mastronarde, D. N. Nuclear pore complex number and distribution throughout the Saccharomyces cerevisiae cell cycle by three-dimensional reconstruction from electron micrographs of nuclear envelopes. Mol. Biol. Cell8, 2119–2132 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gerace, L. & Burke, B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol.4, 335–374 (1988). ArticleCASPubMed Google Scholar
Melcak, I., Hoelz, A. & Blobel, G. Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science315, 1729–1732 (2007). ArticleCASPubMed Google Scholar
Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature450, 695–701 (2007). ArticleCASPubMed Google Scholar
Abercrombie, M. & Dunn, G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res.92, 57–62 (1975). ArticleCASPubMed Google Scholar
Wiesner, S., Lange, A. & Fässler, R. Local call: from integrins to actin assembly. Trends Cell Biol.16, 327–329 (2006). ArticleCASPubMed Google Scholar
Medalia, O. & Geiger, B. Frontiers of microscopy-based research into cell–matrix adhesions. Curr. Opin. Cell Biol.22, 659–668 (2010). ArticleCASPubMed Google Scholar
Chen, W. T. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol.90, 187–200 (1981). ArticleCASPubMed Google Scholar
Geiger, B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell18, 193–205 (1979). ArticleCASPubMed Google Scholar
Burridge, K. & Connell, L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin–membrane interaction. Cell. Motil.3, 405–417 (1983). ArticleCASPubMed Google Scholar
Burridge, K. & Feramisco, J. R. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell19, 587–595 (1980). ArticleCASPubMed Google Scholar
Turner, C. E., Glenney, J. R. Jr & Burridge, K. Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol.111, 1059–1068 (1990). ArticleCASPubMed Google Scholar
Burridge, K., Fath, K., Kelly, T., Nuckolls, G. & Turner, C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol.4, 487–525 (1988). ArticleCASPubMed Google Scholar
Singer, I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell16, 675–685 (1979). ArticleCASPubMed Google Scholar
Heath, J. P. & Dunn, G. A. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J. Cell Sci.29, 197–212 (1978). CASPubMed Google Scholar
Patla, I. et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biol.12, 909–915 (2010). ArticleCASPubMed Google Scholar
Muller, D. A. et al. Structure of the Dengue virus glycoprotein NS1 by electron microscopy and single particle analysis. J. Gen. Virol.93, 771–779 (2012). ArticleCASPubMed Google Scholar
Bharat, T. A. M. et al. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc. Natl Acad. Sci. USA109, 4275–4280 (2012). ArticlePubMedPubMed Central Google Scholar
Pigino, G. et al. Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. J. Struct. Biol.178, 199–206 (2012). ArticlePubMed Google Scholar
Höög, J. L., Bouchet-Marquis, C., McIntosh, J. R., Hoenger, A. & Gull, K. Cryo-electron tomography and 3D analysis of the intact flagellum in Trypanosoma brucei. J. Struct. Biol.178, 189–198 (2012). ArticlePubMedPubMed Central Google Scholar
Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science320, 1332–1336 (2008). ArticleCASPubMedPubMed Central Google Scholar
Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci.125, 570–575 (2012). ArticleCASPubMed Google Scholar
Barr, F. A. & Gruneberg, U. Cytokinesis: placing and making the final cut. Cell131, 847–860 (2007). ArticleCASPubMed Google Scholar
Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem.75, 543–566 (2006). ArticleCASPubMed Google Scholar
Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science331, 1616–1620 (2011). ArticleCASPubMed Google Scholar
Schiel, J. A. et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci.124, 1411–1424 (2011). ArticleCASPubMedPubMed Central Google Scholar
Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA108, 4846–4851 (2011). ArticlePubMedPubMed Central Google Scholar
Raiborg, C. & Stenmark, H. Cell biology. A helix for the final cut. Science331, 1533–1534 (2011). ArticleCASPubMed Google Scholar
Caballe, A. & Martin-Serrano, J. ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic12, 1318–1326 (2011). ArticleCASPubMed Google Scholar
Elia, N., Fabrikant, G., Kozlov, M. & Lippincott-Schwartz, J. Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. Biophys. J.102, 2309–2320 (2012). ArticleCASPubMedPubMed Central Google Scholar
Guizetti, J. & Gerlich, D. W. ESCRT-III polymers in membrane neck constriction. Trends Cell Biol.22, 133–140 (2012). ArticleCASPubMed Google Scholar
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science313, 1642–1645 (2006). ArticlePubMed Google Scholar
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods3, 793–795 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett.19, 780–782 (1994). ArticleCASPubMed Google Scholar
Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett.94, 143903 (2005). ArticleCASPubMed Google Scholar
Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc.198, 82–87 (2000). ArticleCASPubMed Google Scholar
Heintzmann, R. & Cremer, C. G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE.3568, 185–196 (1999). Article Google Scholar