Double-strand break repair: 53BP1 comes into focus (original) (raw)
Bennett, C. B., Lewis, A. L., Baldwin, K. K. & Resnick, M. A. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl Acad. Sci. USA90, 5613–5617 (1993). CASPubMedPubMed Central Google Scholar
Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell75, 729–739 (1993). CASPubMed Google Scholar
Iwabuchi, K., Bartel, P. L., Li, B., Marraccino, R. & Fields, S. Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl Acad. Sci. USA91, 6098–6102 (1994). CASPubMedPubMed Central Google Scholar
Adams, M. M. & Carpenter, P. B. Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Division1, 19 (2006). PubMedPubMed Central Google Scholar
Harrison, J. C. & Haber, J. E. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet.40, 209–235 (2006). CASPubMed Google Scholar
Huen, M. S. Y. et al. Regulation of chromatin architecture by the PWWP domain-containing DNA damage-responsive factor EXPAND1/MUM1. Mol. Cell37, 854–864 (2010). CASPubMedPubMed Central Google Scholar
Silverman, J., Takai, H., Buonomo, S. B. C., Eisenhaber, F. & de Lange, T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev.18, 2108–2119 (2004). CASPubMedPubMed Central Google Scholar
Gong, Z., Cho, Y. W., Kim, J. E., Ge, K. & Chen, J. Accumulation of Pax2 transactivation domain interaction protein (PTIP) at sites of DNA breaks via RNF8-dependent pathway is required for cell survival after DNA damage. J. Biol. Chem.284, 7284–7293 (2009). CASPubMedPubMed Central Google Scholar
Jowsey, P. A., Doherty, A. J. & Rouse, J. Human PTIP facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. J. Biol. Chem.279, 55562–55569 (2004). CASPubMed Google Scholar
Panier, S. et al. Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol. Cell47, 383–395 (2012). CASPubMed Google Scholar
Munoz, I. M., Jowsey, P. A., Toth, R. & Rouse, J. Phospho-epitope binding by the BRCT domains of hPTIP controls multiple aspects of the cellular response to DNA damage. Nucleic Acids Res.35, 5312–5322 (2007). CASPubMedPubMed Central Google Scholar
Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell153, 1266–1280 (2013). CASPubMedPubMed Central Google Scholar
Ditullio, R. A. et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol.4, 998–1002 (2002). CASPubMed Google Scholar
Fernandez-Capetillo, O. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol.4, 993–997 (2002). CASPubMed Google Scholar
Mochan, T. A., Venere, M., DiTullio, R. A. Jr & Halazonetis, T. D. 53BP1, an activator of ATM in response to DNA damage. DNA Repair3, 945–952 (2004). CASPubMed Google Scholar
Wang, B. 53BP1, a mediator of the DNA damage checkpoint. Science298, 1435–1438 (2002). CASPubMed Google Scholar
Ward, I. M., Minn, K., van Deursen, J. and Chen, J. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol. Cell. Biol.23, 2556–2563 (2003). CASPubMedPubMed Central Google Scholar
Lee, J. -H. & Paull, T. T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene26, 7741–7748 (2007). CASPubMed Google Scholar
Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nature Struct. Mol. Biol.17, 688–695 (2010). CAS Google Scholar
Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell141, 243–254 (2010). References 20 and 21 show that 53BP1 is an inhibitor of DNA end-resection and homologous recombination. CASPubMedPubMed Central Google Scholar
Chapman, J. R., Sossick, A. J., Boulton, S. J. & Jackson, S. P. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J. Cell Sci.125, 3529–3534 (2012). CASPubMedPubMed Central Google Scholar
Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem.79, 181–211 (2010). CASPubMedPubMed Central Google Scholar
Heyer, W.-D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet.44, 113–139 (2010). CASPubMedPubMed Central Google Scholar
Chapman, J. R., Taylor, M. R. G. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell47, 497–510 (2012). CASPubMed Google Scholar
Dynan, W. S. & Yoo, S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res.26, 1551–1559 (1998). CASPubMedPubMed Central Google Scholar
Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet.45, 247–271 (2011). CASPubMed Google Scholar
Difilippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature456, 529–533 (2008). CASPubMedPubMed Central Google Scholar
Dimitrova, N., Chen, Y.-C. M., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature456, 524–528 (2008). CASPubMedPubMed Central Google Scholar
Manis, J. P. et al. 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nature Immunol.5, 481–487 (2004). CAS Google Scholar
Reina-San-Martin, B., Chen, J., Nussenzweig, A. & Nussenzweig, M. C. Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1−/− B cells. Eur. J. Immunol.37, 235–239 (2007). CASPubMed Google Scholar
Anderson, L., Henderson, C. & Adachi, Y. Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol. Cell. Biol.21, 1719–1729 (2001). CASPubMedPubMed Central Google Scholar
Rappold, I., Iwabuchi, K., Date, T. & Chen, J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol.153, 613–620 (2001). CASPubMedPubMed Central Google Scholar
Schultz, L. B., Chehab, N. H., Malikzay, A. & Halazonetis, T. D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol.151, 1381–1390 (2000). CASPubMedPubMed Central Google Scholar
Lukas, J., Lukas, C. & Bartek, J. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nature Cell Biol.13, 1161–1169 (2011). CASPubMed Google Scholar
Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell136, 435–446 (2009). CASPubMed Google Scholar
Huen, M. S. Y. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell131, 901–914 (2007). CASPubMedPubMed Central Google Scholar
Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science318, 1637–1640 (2007). CASPubMedPubMed Central Google Scholar
Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell131, 887–900 (2007). CASPubMed Google Scholar
Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell136, 420–434 (2009). References 37 and 41 show that RNF168-mediated regulatory chromatin ubiquitylation is essential for the recruitment of 53BP1 to DSB sites. CASPubMed Google Scholar
Wang, B. & Elledge, S. J. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl Acad. Sci.104, 20759–20763 (2007). CASPubMedPubMed Central Google Scholar
Gatti, M. et al. A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase. Cell Cycle11, 2538–2544 (2012). CASPubMedPubMed Central Google Scholar
Mattiroli, F. et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell150, 1182–1195 (2012). CASPubMed Google Scholar
Goodarzi, A. A. & Jeggo, P. A. The repair and signaling responses to DNA double-strand breaks. Adv. Genet.82, 1–45 (2013). CASPubMed Google Scholar
Chen, J., Feng, W., Jiang, J., Deng, Y. & Huen, M. S. Y. Ring finger protein RNF169 antagonises the ubiquitin-dependent signaling cascade at sites of DNA damage. J. Biol. Chem.287, 27715–27722 (2012). CASPubMedPubMed Central Google Scholar
Huang, J. et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nature Cell Biol.11, 592–603 (2009). CASPubMed Google Scholar
Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S. & Mailand, N. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J. Cell Biol.197, 189–199 (2012). CASPubMedPubMed Central Google Scholar
Panier, S. & Durocher, D. Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nature Rev. Mol. Cell Biol.14, 661–672 (2013). CAS Google Scholar
Bekker-Jensen, S. et al. HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nature Cell Biol.12, 80–86 (2009). PubMed Google Scholar
Butler, L. R. et al. The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response. EMBO J.31, 3918–3934 (2012). CASPubMedPubMed Central Google Scholar
Gudjonsson, T. et al. TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes. Cell150, 697–709 (2012). CASPubMed Google Scholar
Mosbech, A., Lukas, C., Bekker-Jensen, S. & Mailand, N. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J. Biol. Chem.7, 16579–16587 (2013). Google Scholar
Nakada, S. et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature466, 941–946 (2010). CASPubMed Google Scholar
Shao, G. et al. The Rap80–BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8–Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc. Natl Acad. Sci.106, 3166–3171 (2009). CASPubMedPubMed Central Google Scholar
Danielsen, J. R. et al. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding zinc finger. J. Cell Biol.197, 179–187 (2012). CASPubMedPubMed Central Google Scholar
Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev.26, 1179–1195 (2012). CASPubMedPubMed Central Google Scholar
Galanty, Y. et al. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature462, 935–939 (2009). CASPubMedPubMed Central Google Scholar
Luo, K., Zhang, H., Wang, L., Yuan, J. & Lou, Z. Sumoylation of MDC1 is important for proper DNA damage response. EMBO J.31, 3008–3019 (2012). CASPubMedPubMed Central Google Scholar
Morris, J. R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature462, 886–890 (2009). CASPubMed Google Scholar
Yin, Y. et al. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev.26, 1196–1208 (2012). CASPubMedPubMed Central Google Scholar
Vyas, R. et al. RNF4 is required for DNA double-strand break repair in vivo. Cell Death Differ.20, 490–502 (2013). CASPubMed Google Scholar
Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol.5, 675–679 (2003). CASPubMed Google Scholar
Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. & Lukas, J. Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1. J. Cell Biol.170, 201–211 (2005). CASPubMedPubMed Central Google Scholar
Lou, Z., Minter-Dykhouse, K., Wu, X. & Chen, J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature421, 957–961 (2003). CASPubMed Google Scholar
Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. R. & Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature421, 961–966 (2003). CASPubMed Google Scholar
Joo, H. -Y. et al. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature449, 1068–1072 (2007). CASPubMed Google Scholar
Morales, J. C. et al. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J. Biol. Chem.278, 14971–14977 (2003). CASPubMed Google Scholar
Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature499, 50–54 (2013). Discovers that 53BP1 binds directly to RNF168-ubiquitylated H2A and that this binding is required for 53BP1 accumulation at damaged chromatin. CASPubMedPubMed Central Google Scholar
Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell127, 1361–1373 (2006). Reveals the molecular mechanism through which the 53BP1 Tudor domain binds to dimethylated H4K20. CASPubMedPubMed Central Google Scholar
Zgheib, O., Pataky, K., Brugger, J. & Halazonetis, T. D. An oligomerized 53BP1 tudor domain suffices for recognition of DNA double-strand breaks. Mol. Cell. Biol.29, 1050–1058 (2009). CASPubMed Google Scholar
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432, 406–411 (2004). CASPubMed Google Scholar
Pesavento, J. J., Yang, H., Kelleher, N. L. & Mizzen, C. A. Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol. Cell. Biol.28, 468–486 (2008). CASPubMed Google Scholar
Oda, H. et al. Regulation of the histone H4 monomethylase PR-Set7 by CRL4Cdt2-mediated PCNA-dependent degradation during DNA damage. Mol. Cell40, 364–376 (2010). CASPubMedPubMed Central Google Scholar
Pei, H. et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature470, 124–128 (2011). CASPubMedPubMed Central Google Scholar
Hajdu, I., Ciccia, A., Lewis, S. M. & Elledge, S. J. Wolf–Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage. Proc. Natl Acad. Sci. USA108, 13130–13134 (2011). CASPubMedPubMed Central Google Scholar
Karachentsev, D., Sarma, K., Reinberg, D. & Steward, R. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev.19, 431–435 (2005). CASPubMedPubMed Central Google Scholar
Schotta, G. et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev.22, 2048–2061 (2008). CASPubMedPubMed Central Google Scholar
Marango, J. et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood111, 3145–3154 (2008). CASPubMedPubMed Central Google Scholar
Nimura, K. et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf–Hirschhorn syndrome. Nature460, 287–291 (2009). CASPubMed Google Scholar
Hartlerode, A. J. et al. Impact of histone H4 lysine 20 methylation on 53BP1 responses to chromosomal double strand breaks. PLoS ONE7, e49211 (2012). CASPubMedPubMed Central Google Scholar
Acs, K. et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nature Struct. Mol. Biol.18, 1345–1350 (2011). CAS Google Scholar
Mallette, F. A. et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J.31, 1865–1878 (2012). CASPubMedPubMed Central Google Scholar
Lee, J., Thompson, J. R., Botuyan, M. V. & Mer, G. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A–tudor. Nature Struct. Mol. Biol.15, 109–111 (2008). CAS Google Scholar
Min, J. et al. L3MBTL1 recognition of mono- and dimethylated histones. Nature Struct. Mol. Biol.14, 1229–1230 (2007). CAS Google Scholar
Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nature Cell Biol.13, 1376–1382 (2011). CASPubMed Google Scholar
Smeenk, G. & van Attikum, H. The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu. Rev. Biochem.82, 55–80 (2013). CASPubMed Google Scholar
Hsiao, K. Y. & Mizzen, C. A. Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. J. Mol. Cell Biol.5, 157–165 (2013). CASPubMed Google Scholar
Tang, J. et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nature Struct. Mol. Biol.20, 317–325 (2013). References 88 and 89 showed that the acetylation status of H4K16 regulates the association of 53BP1 with dimethylated H4K20 during DSB repair. CAS Google Scholar
Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Struct. Mol. Biol.17, 1144–1151 (2010). CAS Google Scholar
Lee, M. J., Lee, B. -H., Hanna, J., King, R. W. & Finley, D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell Proteomics10, R110.003871–R110.003875 (2011). PubMed Google Scholar
Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell119, 603–614 (2004). CASPubMed Google Scholar
Santos, M. A. et al. Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J. Exp. Med.207, 973–981 (2010). CASPubMedPubMed Central Google Scholar
Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell123, 1213–1226 (2005). CASPubMed Google Scholar
Kilkenny, M. L. et al. Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Genes Dev.22, 2034–2047 (2008). CASPubMedPubMed Central Google Scholar
Sanders, S. L., Arida, A. R. & Phan, F. P. Requirement for the phospho-H2AX binding module of Crb2 in double-strand break targeting and checkpoint activation. Mol. Cell. Biol.30, 4722–4731 (2010). CASPubMedPubMed Central Google Scholar
Sofueva, S., Du, L.-L., Limbo, O., Williams, J. S. & Russell, P. BRCT domain interactions with phospho-histone H2A target Crb2 to chromatin at double-strand breaks and maintain the DNA damage checkpoint. Mol. Cell. Biol.30, 4732–4743 (2010). CASPubMedPubMed Central Google Scholar
Du, L. L., Nakamura, T. M. & Russell, P. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev.20, 1583–1596 (2006). CASPubMedPubMed Central Google Scholar
Iwabuchi, K. et al. 53BP1 contributes to survival of cells irradiated with X-ray during G1 without Ku70 or Artemis. Genes Cells11, 935–948 (2006). CASPubMed Google Scholar
Nakamura, K. et al. Genetic dissection of vertebrate 53BP1: a major role in non-homologous end joining of DNA double strand breaks. DNA Repair5, 741–749 (2006). CASPubMed Google Scholar
Bothmer, A. et al. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol. Cell42, 319–329 (2011). CASPubMedPubMed Central Google Scholar
Rai, R. et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J.29, 2598–2610 (2010). CASPubMedPubMed Central Google Scholar
Chapman, J. R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell49, 858–871 (2013). CASPubMedPubMed Central Google Scholar
Escribano-Diaz, C. et al. A cell cycle-dependent regulatory circuit composed of 53BP1–RIF1 and BRCA1–CtIP controls DNA repair pathway choice. Mol. Cell49, 872–883 (2013). CASPubMed Google Scholar
Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & de Lange, T. 53BP1 regulates repair using rif1 to control 5′ end resection. Science399, 700–704 (2013). Google Scholar
Di Virgilio, M. et al. rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science399, 711–715 (2013). Google Scholar
Feng, L., Fong, K.-W., Wang, J., Wang, W. & Chen, J. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J. Biol. Chem.288, 11135–11143 (2013). References 103–107 identify RIF1 as a 53BP1 effector protein during DSB repair pathway choice. CASPubMedPubMed Central Google Scholar
Marcand, S., Wotton, D., Gilson, E. & Shore, D. Rap1p and telomere length regulation in yeast. Ciba Found. Symp.211, 76–93; discussion 93–103 (1997). CASPubMed Google Scholar
Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev.11, 748–760 (1997). CASPubMed Google Scholar
Buonomo, S. B., Wu, Y., Ferguson, D. & de Lange, T. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J. Cell Biol.187, 385–398 (2009). CASPubMedPubMed Central Google Scholar
Cornacchia, D. et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J.31, 3678–3690 (2012). CASPubMedPubMed Central Google Scholar
Yamazaki, S. et al. Rif1 regulates the replication timing domains on the human genome. EMBO J.31, 3667–3677 (2012). CASPubMedPubMed Central Google Scholar
Xu, D. et al. Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J.29, 3140–3155 (2010). CASPubMedPubMed Central Google Scholar
Rai, R. et al. The E3 ubiquitin ligase Rnf8 stabilizes Tpp1 to promote telomere end protection. Nature Struct. Mol. Biol.18, 1400–1407 (2011). CAS Google Scholar
Wang, X., Takenaka, K. & Takeda, S. PTIP promotes DNA double-strand break repair through homologous recombination. Genes Cells15, 243–254 (2010). CASPubMed Google Scholar
Shi, T. et al. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell153, 1340–1353 (2013). CASPubMed Google Scholar
Xie, A. et al. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol. Cell28, 1045–1057 (2007). CASPubMedPubMed Central Google Scholar
Brzovic, P. S. et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl Acad. Sci. USA100, 5646–5651 (2003). CASPubMedPubMed Central Google Scholar
Reczek, C. R., Szabolcs, M., Stark, J. M., Ludwig, T. & Baer, R. The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression. J. Cell Biol.201, 693–707 (2013). CASPubMedPubMed Central Google Scholar
Boboila, C., Alt, F. W. & Schwer, B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol.116, 1–49 (2012). CASPubMed Google Scholar