Sibling rivalry in the E2F family (original) (raw)
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512 (1999). ArticleCASPubMed Google Scholar
Nevins, J. R. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science258, 424–429 (1992). ArticleCASPubMed Google Scholar
La Thangue, N. B. & Rigby, P. W. An adenovirus E1A-like transcription factor is regulated during the differentiation of murine embryonal carcinoma stem cells. Cell49, 507–513 (1987). ArticleCASPubMed Google Scholar
Bandara, L. R. & La Thangue, N. B. Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature351, 494–497 (1991). ArticleCASPubMed Google Scholar
Girling, R. et al. A new component of the transcription factor DRTF1/E2F. Nature362, 83–87 (1993). ArticleCASPubMed Google Scholar
Weinberg, R. A. The retinoblastoma gene and gene product. Cancer Surv.12, 43–57 (1992). CASPubMed Google Scholar
DeGregori, J., Leone, G., Ohtani, K., Miron, A. & Nevins, J. R. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev.9, 2873–2887 (1995). ArticleCASPubMed Google Scholar
Schwarz, J. K. et al. Expression of the E2F1 transcription factor overcomes type-β transforming growth factor-mediated growth suppression. Proc. Natl Acad. Sci. USA92, 483–487 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mann, D. J. & Jones, N. C. E2F-1 but not E2F-4 can overcome p16-induced G1 cell-cycle arrest. Curr. Biol.6, 474–483 (1996). ArticleCASPubMed Google Scholar
Bartek, J., Bartkova, J. & Lukas, J. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol.8, 805–814 (1996). ArticleCASPubMed Google Scholar
Mulligan, G. & Jacks, T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet.14, 223–229 (1998). ArticleCASPubMed Google Scholar
Hu, N. et al. Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene9, 1021–1027 (1994). CASPubMed Google Scholar
Williams, B. O., Morgenbesser, S. D., DePinho, R. A. & Jacks, T. Tumorigenic and developmental effects of combined germ-line mutations in Rb and p53. Cold Spring Harb. Symp. Quant. Biol.59, 449–457 (1994). ArticleCASPubMed Google Scholar
Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature359, 328–330 (1992). ArticleCASPubMed Google Scholar
Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature359, 288–294 (1992). ArticleCASPubMed Google Scholar
Helin, K. et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell70, 337–350 (1992). ArticleCASPubMed Google Scholar
Flemington, E. K., Speck, S. H. & Kaelin, W. G. Jr. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA90, 6914–6918 (1993). ArticleCASPubMedPubMed Central Google Scholar
Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol.13, 6501–6508 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. S. & Dean, D. C. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene20, 3134–3138 (2001). ArticleCASPubMed Google Scholar
Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature391, 597–601 (1998). ArticleCASPubMed Google Scholar
Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell92, 463–473 (1998). ArticleCASPubMed Google Scholar
Chen, T. T. & Wang, J. Y. Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function. Mol. Cell. Biol.20, 5571–5580 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dahiya, A., Gavin, M. R., Luo, R. X. & Dean, D. C. Role of the LXCXE binding site in Rb function. Mol. Cell. Biol.20, 6799–6805 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. S. et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC–Rb–hSWI/SNF and Rb–hSWI/SNF. Cell101, 79–89 (2000). ArticleCASPubMed Google Scholar
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001).This study shows that pRB associates with both SUV39H1 and HP1 through its pocket domain. SUV39H1 cooperates with pRB in the transcriptional repression of the E2F-responsivecyclin Epromoter. Moreover,in vivoChIP assays show that HP1 is recruited to thecyclin Epromoter in a pRB-dependent manner. ArticleCASPubMed Google Scholar
Vandel, L. et al. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol.21, 6484–6494 (2001). ArticleCASPubMedPubMed Central Google Scholar
Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev.14, 2393–2409 (2000). ArticleCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromodomain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCASPubMed Google Scholar
Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev.8, 28–35 (1998). ArticleCASPubMed Google Scholar
Bandara, L. R., Buck, V. M., Zamanian, M., Johnston, L. H. & La Thangue, N. B. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F. EMBO J.12, 4317–4324 (1993). ArticleCASPubMedPubMed Central Google Scholar
Helin, K. et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative _trans_-activation. Genes Dev.7, 1850–1861 (1993). ArticleCASPubMed Google Scholar
Krek, W., Livingston, D. M. & Shirodkar, S. Binding to DNA and the retinoblastoma gene product promoted by complex formation of different E2F family members. Science262, 1557–1560 (1993). ArticleCASPubMed Google Scholar
Wu, C. L., Zukerberg, L. R., Ngwu, C., Harlow, E. & Lees, J. A. In vivo association of E2F and DP family proteins. Mol. Cell. Biol.15, 2536–2546 (1995). ArticleCASPubMedPubMed Central Google Scholar
Trimarchi, J. M. et al. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl Acad. Sci. USA95, 2850–2855 (1998). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev.14, 804–816 (2000).This study usesin vivoChIP assays to examine the cell-cycle-dependent association of individual E2F and pocket proteins with several E2F-responsive promoters. In G0/G1, these promoters are primarily occupied by E2F4, p107 and p130. As cells enter late G1, there is a significant reduction in the binding of these proteins and E2F1, E2F2 and E2F3 now associate. There was no detectable difference in the spectrum of E2Fs at individual responsive genes, which indicates that they could all be regulated similarly. CASPubMedPubMed Central Google Scholar
Wells, J., Boyd, K. E., Fry, C. J., Bartley, S. M. & Farnham, P. J. Target gene specificity of E2F and pocket protein family members in living cells. Mol. Cell. Biol.20, 5797–5807 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kaelin, W. G. Jr et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell70, 351–364 (1992). ArticleCASPubMed Google Scholar
Shan, B. et al. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol. Cell. Biol.12, 5620–5631 (1992). ArticleCASPubMedPubMed Central Google Scholar
Ivey-Hoyle, M. et al. Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F. Mol. Cell. Biol.13, 7802–7812 (1993). ArticleCASPubMedPubMed Central Google Scholar
Leone, G. et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol. Cell. Biol.20, 3626–3632 (2000). ArticleCASPubMedPubMed Central Google Scholar
Johnson, D. G., Schwarz, J. K., Cress, W. D. & Nevins, J. R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature365, 349–352 (1993). ArticleCASPubMed Google Scholar
Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA91, 10918–10922 (1994). ArticleCASPubMedPubMed Central Google Scholar
Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol.16, 1047–1057 (1996). ArticleCASPubMedPubMed Central Google Scholar
Johnson, D. G., Cress, W. D., Jakoi, L. & Nevins, J. R. Oncogenic capacity of the E2F1 gene. Proc. Natl Acad. Sci. USA91, 12823–12827 (1994). ArticleCASPubMedPubMed Central Google Scholar
Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol.14, 8166–8173 (1994). ArticleCASPubMedPubMed Central Google Scholar
Singh, P., Wong, S. H. & Hong, W. Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation. EMBO J.13, 3329–3338 (1994). ArticleCASPubMedPubMed Central Google Scholar
Xu, G., Livingston, D. M. & Krek, W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc. Natl Acad. Sci. USA92, 1357–1361 (1995). ArticleCASPubMedPubMed Central Google Scholar
Leone, G. et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev.12, 2120–2130 (1998). ArticleCASPubMedPubMed Central Google Scholar
Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Genes Dev.14, 690–703 (2000).This study shows that E2F3 acts in a dose-dependent manner to mediate the mitogen-induced activation of almost all known E2F-responsive genes. As a result, E2F3 controls the rate of proliferation of both primary and transformed MEFs. CASPubMedPubMed Central Google Scholar
Wu, L. et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature414, 457–462 (2001).Using the conditional mutantE2falleles, the authors show that the combined loss of E2F1, E2F2 and E2F3 completely blocks the proliferation of MEFs. This is accompanied by an increase in the levels of the Cdk inhibitor p21. ArticleCASPubMed Google Scholar
Hiebert, S. W. et al. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol. Cell. Biol.15, 6864–6874 (1995). ArticleCASPubMedPubMed Central Google Scholar
Hsieh, J. K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev.11, 1840–1852 (1997). ArticleCASPubMed Google Scholar
Phillips, A. C., Bates, S., Ryan, K. M., Helin, K. & Vousden, K. H. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev.11, 1853–1863 (1997). ArticleCASPubMed Google Scholar
Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell4, 771–781 (1999). ArticleCASPubMed Google Scholar
DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA94, 7245–7250 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tolbert, D., Lu, X., Yin, C., Tantama, M. & Van Dyke, T. p19ARF is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol. Cell. Biol.22, 370–377 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tsai, K. Y., MacPherson, D., Rubionson, D. A., Crowley, D., and Jacks, T. ARF is not required for apoptosis in Rb mutant mouse embryos. Curr. Biol. (in the press).
Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature407, 645–648 (2000). ArticleCASPubMed Google Scholar
Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature407, 642–645 (2000). ArticleCASPubMed Google Scholar
Stiewe, T. & Putzer, B. M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet.26, 464–469 (2000). ArticleCASPubMed Google Scholar
Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol.21, 4684–4699 (2001). ArticleCASPubMedPubMed Central Google Scholar
Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev.15, 267–285 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kowalik, T. F., DeGregori, J., Leone, G., Jakoi, L. & Nevins, J. R. E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2. Cell Growth Differ.9, 113–118. (1998). CASPubMed Google Scholar
Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell8, 105–113 (2001). ArticleCASPubMed Google Scholar
Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol.19, 6379–6395 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell2, 293–304 (1998).By intercrossing theRbandE2f1mutant mouse strains, the authors show that E2F1 loss causes a significant reduction in the levels of ectopic S-phase entry, p53-dependent- and p53-independent-apoptosis that arises in pRB-deficient embryos. This ameliorates the defective erythropoiesis and thereby extends the lifespan of the embryo by several days. ArticleCASPubMed Google Scholar
Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev.15, 386–391 (2001).This study shows that E2F3 loss almost completely suppresses the inappropriate proliferation, p53-dependent- and p53-independent-apoptosis in pRB-deficient embryos. As the degree of suppression exceeds that which results from the loss of E2F1, this indicates E2F3 can induce apoptosisin vivoindependently of E2F1. ArticleCASPubMedPubMed Central Google Scholar
Pan, H. et al. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol. Cell2, 283–292 (1998). ArticleCASPubMed Google Scholar
Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nature Genet.18, 360–364 (1998). ArticleCASPubMed Google Scholar
Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell85, 549–561 (1996). ArticleCASPubMed Google Scholar
Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell85, 537–548 (1996).This study examines the phenotypic consequences of E2F1 deficiency. In addition to various developmental defects, theE2f1mutant mice were unexpectedly found to have an increased susceptibility to tumours. ArticleCASPubMed Google Scholar
Zhu, J. W., DeRyckere, D., Li, F. X., Wan, Y. Y. & DeGregori, J. A role for E2F1 in the induction of ARF, p53, and apoptosis during thymic negative selection. Cell Growth Differ.10, 829–838 (1999). CASPubMed Google Scholar
Garcia, I., Murga, M., Vicario, A., Field, S. J. & Zubiaga, A. M. A role for E2F1 in the induction of apoptosis during thymic negative selection. Cell Growth Differ.11, 91–98 (2000). CASPubMed Google Scholar
Humbert, P. O. et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol. Cell6, 281–291 (2000). ArticleCASPubMed Google Scholar
Meng, R. D., Phillips, P. & El-Deiry, W. S. p53-independent increase in E2F-1 expression enhances the cytotoxic effects of etoposide and of adriamycin. Int. J. Oncol.14, 5–14 (1999). CASPubMed Google Scholar
Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev.15, 1833–1844 (2001). CASPubMedPubMed Central Google Scholar
Maser, R. S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol.21, 6006–6016 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhu, J. W. et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol. Cell. Biol.21, 8547–8564 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dyson, N. et al. Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRB-associated E2F-1. J. Virol.67, 7641–7647 (1993). CASPubMedPubMed Central Google Scholar
Beijersbergen, R. L. et al. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev.8, 2680–2690 (1994). ArticleCASPubMed Google Scholar
Hijmans, E. M., Voorhoeve, P. M., Beijersbergen, R. L., van't Veer, L. J. & Bernards, R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol. Cell. Biol.15, 3082–3089 (1995). ArticleCASPubMedPubMed Central Google Scholar
Vairo, G., Livingston, D. M. & Ginsberg, D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev.9, 869–881 (1995). ArticleCASPubMed Google Scholar
Ikeda, M. A., Jakoi, L. & Nevins, J. R. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc. Natl Acad. Sci. USA93, 3215–3220 (1996). ArticleCASPubMedPubMed Central Google Scholar
Moberg, K., Starz, M. A. & Lees, J. A. E2F-4 switches from p130 to p107 and pRB in response to cell-cycle re-entry. Mol. Cell. Biol.16, 1436–1449 (1996). ArticleCASPubMedPubMed Central Google Scholar
Muller, H. et al. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol. Cell. Biol.17, 5508–5520 (1997).The authors show that the ability of the activating E2Fs to induce quiescent cells to re-enter the cell cycle is dependent on their nuclear localization. This is determined by a canonical basic NLS within the amino-terminal domain. By contrast, E2F4 is unable to induce cell cycle re-entry as a result of its cytoplasmic localization. ArticleCASPubMedPubMed Central Google Scholar
Verona, R. et al. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol.17, 7268–7282 (1997).This study shows that ectopically expressed activating E2Fs are nuclear, whereas E2F4 is predominantly cytoplasmic, and the differential localization of these proteins accounts for the pronounced differences in their ability to activate transcription. It confirms that the endogenous E2F4–DP complexes are also sequestered in the cytoplasm and shows that these species become predominantly nuclear when they are bound to pRB or p130 in G0/G1. This indicates that E2F4 is primarily involved in the repression rather than the activation of E2F-responsive genes. ArticleCASPubMedPubMed Central Google Scholar
Magae, J., Wu, C. L., Illenye, S., Harlow, E. & Heintz, N. H. Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J. Cell Sci.109, 1717–1726 (1996). CASPubMed Google Scholar
Gaubatz, S., Lees, J. A., Lindeman, G. J. & Livingston, D. M. E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol. Cell. Biol.21, 1384–1392 (2001). ArticleCASPubMedPubMed Central Google Scholar
Iavarone, A. & Massague, J. E2F and histone deacetylase mediate transforming growth factor-β repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol.19, 916–922 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lam, E. W. & Watson, R. J. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J.12, 2705–2713 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hsiao, K. M., McMahon, S. L. & Farnham, P. J. Multiple DNA elements are required for the growth regulation of the mouse E2F1 promoter. Genes Dev.8, 1526–1537 (1994). ArticleCASPubMed Google Scholar
Tommasi, S. & Pfeifer, G. P. In vivo structure of the human cdc2 promoter: release of a p130–E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol. Cell. Biol.15, 6901–6913 (1995). ArticleCASPubMedPubMed Central Google Scholar
Huet, X., Rech, J., Plet, A., Vie, A. & Blanchard, J. M. Cyclin A expression is under negative transcriptional control during the cell cycle. Mol. Cell. Biol.16, 3789–3798 (1996). ArticleCASPubMedPubMed Central Google Scholar
Zwicker, J., Liu, N., Engeland, K., Lucibello, F. C. & Muller, R. Cell cycle regulation of E2F site occupation in vivo. Science271, 1595–1597 (1996). ArticleCASPubMed Google Scholar
Bruce, J. L., Hurford, R. K. Jr, Classon, M., Koh, J. & Dyson, N. Requirements for cell cycle arrest by p16INK4a. Mol. Cell6, 737–742 (2000). ArticleCASPubMed Google Scholar
Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell6, 729–735 (2000).This study shows thatE2f4–E2f5double mutant MEFs are unable to arrest in response to the over-expression of the Cdk inhibitor p16, providing direct genetic evidence for the role of the repressive E2Fs in mediating cell-cycle exit. ArticleCASPubMed Google Scholar
Hurford, R. K. Jr, Cobrinik, D., Lee, M. H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev.11, 1447–1463 (1997).The combined loss of p107 and p130 is shown to cause a significant upregulation in the expression of known E2F-responsive genes in G0/G1 cells, and supports the role of these pocket proteins in the repression of these target genes. ArticleCASPubMed Google Scholar
Lindeman, G. J. et al. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev.12, 1092–1098 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rempel, R. E. et al. Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol. Cell6, 293–306 (2000). ArticleCASPubMed Google Scholar
Persengiev, S. P., Kondova, I. I. & Kilpatrick, D. L. E2F4 actively promotes the initiation and maintenance of nerve growth factor-induced cell differentiation. Mol. Cell. Biol.19, 6048–6056 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cobrinik, D. et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev.10, 1633–1644 (1996). ArticleCASPubMed Google Scholar
Dahiya, A., Wong, S., Gonzalo, S., Gavin, M. & Dean, D. C. Linking the Rb and polycomb pathways. Mol. Cell8, 557–569 (2001).This paper is one of an important series from the Dean lab that examines the ability of pRB to associate with histone-modifying enzymes and repress E2F-responsive genes. Its primary focus is to show that an E2F–pRB–CtBP–HPC2 complex can repress thecyclin Agene. However, it also provides key information aboutin vivotiming of the pRB-mediated transcriptional repression. Using ChIP assays, the authors confirm the finding that pRB does not associate with E2F-responsive promoters in cells that retain the ability to divide. They further show that pRB becomes promoter bound in cells that have to be induced to exit the cell cycle permanently through the sustained expression of p16. ArticleCASPubMed Google Scholar
Altiok, S., Xu, M. & Spiegelman, B. M. PPAR-γ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev.11, 1987–1998 (1997). ArticleCASPubMedPubMed Central Google Scholar
Slomiany, B. A., D'Arigo, K. L., Kelly, M. M. & Kurtz, D. T. C/EBPα inhibits cell growth via direct repression of E2F-DP-mediated transcription. Mol. Cell. Biol.20, 5986–5997 (2000). ArticleCASPubMedPubMed Central Google Scholar
Porse, B. T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell107, 247–258 (2001). ArticleCASPubMed Google Scholar
Chen, P. L., Riley, D. J., Chen, Y. & Lee, W. H. Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev.10, 2794–2804 (1996). ArticleCASPubMed Google Scholar
Chen, P. L., Riley, D. J., Chen-Kiang, S. & Lee, W. H. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6. Proc. Natl Acad. Sci. USA93, 465–469 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thomas, D. M. et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell8, 303–316 (2001). ArticleCASPubMed Google Scholar
Morkel, M., Wenkel, J., Bannister, A. J., Kouzarides, T. & Hagemeier, C. An E2F-like repressor of transcription. Nature390, 567–568 (1997). ArticleCASPubMed Google Scholar
Cartwright, P., Muller, H., Wagener, C., Holm, K. & Helin, K. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene17, 611–623 (1998). ArticleCASPubMed Google Scholar
Gaubatz, S., Wood, J. G. & Livingston, D. M. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc. Natl Acad. Sci. USA95, 9190–9195 (1998). ArticleCASPubMedPubMed Central Google Scholar
Trimarchi, J. M., Fairchild, B., Wen, J. & Lees, J. A. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl Acad. Sci. USA98, 1519–1524 (2001). ArticleCASPubMedPubMed Central Google Scholar
van Lohuizen, M. Functional analysis of mouse Polycomb group genes. Cell Mol. Life Sci.54, 71–79 (1998). ArticleCASPubMed Google Scholar
Jacobs, J. J. & van Lohuizen, M. Cellular memory of transcriptional states by Polycomb-group proteins. Semin. Cell Dev. Biol.10, 227–235 (1999). ArticleCASPubMed Google Scholar
Francis, N. J. & Kingston, R. E. Mechanisms of transcriptional memory. Nature Rev. Mol. Cell Biol.2, 409–421 (2001). ArticleCAS Google Scholar
Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P. & Adams, J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in μ-myc transgenic mice. Cell65, 753–763 (1991). ArticleCASPubMed Google Scholar
van Lohuizen, M. et al. Identification of cooperating oncogenes in μ-myc transgenic mice by provirus tagging. Cell65, 737–752 (1991). ArticleCASPubMed Google Scholar
Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dynlacht, B. D., Brook, A., Dembski, M., Yenush, L. & Dyson, N. DNA-binding and _trans_-activation properties of Drosophila E2F and DP proteins. Proc. Natl Acad. Sci. USA91, 6359–6363 (1994). ArticleCASPubMedPubMed Central Google Scholar
Frolov, M. V. et al. Functional antagonism between E2F family members. Genes Dev.15, 2146–2160 (2001).Drosophilahas two E2Fs, dE2F1 and dE2F2. This paper shows that dE2F2 is a repressor of E2F-responsive genes and its mutation almost completely suppresses the phenotypic defects that result from dE2F1-loss. So, dE2F1 and dE2F2 antogonize each others functionin vivo. ArticleCASPubMedPubMed Central Google Scholar
Dyson, N. & Harlow, E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv.12, 161–195 (1992). CASPubMed Google Scholar
Lee, M. H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev.10, 1621–1632 (1996). ArticleCASPubMed Google Scholar
Aalfs, J. D. & Kingston, R. E. What does 'chromatin remodeling' mean? Trends Biochem Sci.25, 548–555 (2000). ArticleCASPubMed Google Scholar