Cyclic nucleotide research — still expanding after half a century (original) (raw)

References

  1. Robison, G. A., Butcher, R. W. & Sutherland, E. W. cAMP (Academic, New York and London, 1971).
    Google Scholar
  2. Wosilait, W. D. & Sutherland, E. W. The relationship of epinephrine and glucagon to liver phosphorylase. II. Enzymatic inactivation of liver phosphorylase. J. Biol. Chem. 218, 469–481 (1957).
    Google Scholar
  3. Krebs, E. & Fischer, E. The phosphorylase B to A converting enzyme of rabbit skeletal muscle. Biochim. Biophys. Acta 1989, 302–309 (1956).
    Google Scholar
  4. Rall, T. W., Sutherland, E. W. & Wosilait, W. D. The relationship of epinephrine and glucagon to liver phosphorylase. III. Reactivation of liver phosphorylase in slices and in extracts. J. Biol. Chem. 218, 483–495 (1957).
    Google Scholar
  5. Rall, T., Sutherland, E. & Berthet, J. The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. IV. J. Biol. Chem. 224, 463–475 (1957).
    CAS PubMed Google Scholar
  6. Sutherland, E. W. & Rall, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem. 232, 1077–1091 (1958).
    CAS PubMed Google Scholar
  7. Bourne, H., Rall, T. W. & Gallagher, G. L. Getting the message across. J. NIH Res. 2, 77–78 (1990).
    Google Scholar
  8. Cook, W. H., Lipkin, D. & Markham, R. The formation of cyclic dianhydrodiadenylic acid by the alkaline degradation of adenosine-5′-triphosphoric acid. J. Am. Chem. Soc. 79, 3607–3608 (1957).
    CAS Google Scholar
  9. Lipkin, D., Cook, W. H. & Markham, R. Adenosine-3′,5′-phosphoric acid: a proof of structure. J. Am. Chem. Soc. 81, 6198–6203 (1959).
    CAS Google Scholar
  10. Robinson, G. A, Nahas, G. G. & Triner, L. (eds) Cyclic AMP and Cell Function. Ann. NY Acad. Sci. 185 (1970).
  11. Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3765 (1968).
    CAS PubMed Google Scholar
  12. Brooker, G., Thomas, L. & Appleman, M. M. The assay of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in biological materials by enzymatic radio-isotopic displacement. Biochemistry 7, 4177–4181 (1968).
    CAS PubMed Google Scholar
  13. Goldberg, N. D., O'Toole, A. G. & Haddox, M. K. Analysis of cyclic AMP and cyclic GMP by enzymic cycling procedures. Adv. Cyclic Nucleotide Res. 2, 63–80 (1972).
    CAS PubMed Google Scholar
  14. Steiner, A. L., Parker, C. W. & Kipnis, D. M. The measurement of cyclic nucleotides by radioimmunoassay. Adv. Biochem. Psychopharmacol. 3, 89–111 (1970).
    CAS PubMed Google Scholar
  15. Gilman, A. G. A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Natl Acad. Sci. USA 67, 305–312 (1970).
    CAS PubMed Google Scholar
  16. Tao, M., Salas, M. L. & Lipmann, F. Mechanism of activation by adenosine 3′,5′-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc. Natl Acad. Sci. USA 67, 408–414 (1970).
    CAS PubMed Google Scholar
  17. Brostrom, M. A., Reimann, E. M., Walsh, D. A. & Krebs, E. G. A cyclic 3′,5′-AMP-stimulated protein kinase from cardiac muscle. Adv. Enzyme Regul. 8, 191–203 (1970).
    CAS PubMed Google Scholar
  18. Gill, G. N. & Garren, L. D. Role of the receptor in the mechanism of action of adenosine 3′,5′- cyclic monophosphate. Proc. Natl Acad. Sci. USA 68, 786–790 (1971).
    CAS PubMed Google Scholar
  19. Murad, F., Manganiello, V. & Vaughan, M. A simple, sensitive protein-binding assay for guanosine 3′,5′-monophosphate. Proc. Natl Acad. Sci. USA 68, 736–739 (1971).
    CAS PubMed Google Scholar
  20. Harper, J. F. & Brooker, G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′0 acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1, 207–218 (1975).
    CAS PubMed Google Scholar
  21. Pohl, S. L., Birnbaumer, L. & Rodbell, M. Glucagon-sensitive adenyl cylase in plasma membrane of hepatic parenchymal cells. Science 164, 566–567 (1969).
    CAS PubMed Google Scholar
  22. Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. Properties of the adenyl cyclase systems in liver and adipose cells: the mode of action of hormones. Acta Diabetol. Lat. 7 (Suppl. 1), 9–63 (1970).
    PubMed Google Scholar
  23. Pohl, S. L., Krans, H. M., Kozyreff, V., Birnbaumer, L. & Rodbell, M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J. Biol. Chem. 246, 4447–4454 (1971).
    CAS PubMed Google Scholar
  24. Rodbell, M., Krans, H. M., Pohl, S. L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem. 246, 1872–1876 (1971).
    CAS PubMed Google Scholar
  25. Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246, 1877–1882 (1971).
    CAS PubMed Google Scholar
  26. Cassel, D. & Selinger, Z. Mechanism of adenylate cyclase activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc. Natl Acad. Sci USA 75, 4155–4159 (1978).
    CAS PubMed Google Scholar
  27. Daniel, V., Litwack, G. & Tomkins, G. M. Induction of cytolysis of cultured lymphoma cells by adenosine 3′,5′- cyclic monophosphate and the isolation of resistant variants. Proc. Natl Acad. Sci. USA 70, 76–79 (1973).
    CAS PubMed Google Scholar
  28. Bourne, H. R., Coffino, P. & Tomkins, G. M. Somatic genetic analysis of cyclic AMP action: characterization of unresponsive mutants. J. Cell. Physiol. 85, 611–620 (1975).
    CAS PubMed Google Scholar
  29. Ross, E. M. & Gilman, A. G. Resolution of some components of adenylate cyclase necessary for catalytic activity. J. Biol. Chem. 252, 6966–6969 (1977).
    CAS PubMed Google Scholar
  30. Ross, E. M. & Gilman, A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interactions of solubilized components with receptor-replete membranes. Proc. Natl Acad. Sci. USA 74, 3715–3719 (1977).
    CAS PubMed Google Scholar
  31. Ross, E. M., Howlett, A. C., Ferguson, K. M. & Gilman, A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401–6412 (1978).
    CAS PubMed Google Scholar
  32. Pfeuffer, T. & Thomas, R. Stimulation of adenylate cyclase from avian erythrocyte membranes by GTP analogs. Separation and partial purification of a GTP-binding protein. Hoppe. Seyler's Z. Physiol. Chem. 355, 1237–1238 (1974).
    CAS PubMed Google Scholar
  33. Miki, N., Baraban, J. M., Keirns, J. J., Boyce, J. J. & Bitensky, M. W. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J. Biol. Chem. 250, 6320–6327 (1975).
    CAS PubMed Google Scholar
  34. Stryer, L. The molecules of visual excitation. Sci. Am. 257, 42–50 (1987).
    CAS PubMed Google Scholar
  35. Hanoune, J. & Defer, N. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol. 41, 145–174 (2001).
    CAS PubMed Google Scholar
  36. Ashman, D. F., Lipton, R., Melicow, M. M. & Price, T. D. Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem. Biophys. Res. Commun. 11, 330–334 (1963).
    CAS PubMed Google Scholar
  37. Hardman, J. G., Davis, J. W. & Sutherland, E. W. Measurement of guanosine 3′,5′-monophosphate and other cyclic nucleotides. Variations in urinary excretion with hormonal state of the rat. J. Biol. Chem. 241, 4812–4815 (1966).
    CAS PubMed Google Scholar
  38. Hardman, J. G. & Sutherland, E. W. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′- monophosphate from guanosine trihosphate. J. Biol. Chem. 244, 6363–6370 (1969).
    CAS PubMed Google Scholar
  39. Furchgott, R. F. & Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980).
    CAS PubMed Google Scholar
  40. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA 84, 9265–9269 (1987).
    CAS PubMed Google Scholar
  41. Ignarro, L. J., Byrns, R. E. & Wood, K. S. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ. Res. 60, 82–92 (1987).
    CAS PubMed Google Scholar
  42. Rapoport, R. M., Waldman, S. A., Ginsburg, R., Molina, C. R. & Murad, F. Effects of glyceryl trinitrate on endothelium-dependent and -independent relaxation and cyclic GMP levels in rat aorta and human coronary artery. J. Cardiovasc. Pharmacol. 10, 82–89 (1987).
    CAS PubMed Google Scholar
  43. Waldman, S. A., Rapoport, R. M. & Murad, F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J. Biol. Chem. 259, 14332–14334 (1984).
    CAS PubMed Google Scholar
  44. Kuno, T. et al. Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J. Biol. Chem. 261, 5817–5823 (1986).
    CAS PubMed Google Scholar
  45. Lowe, D. G. et al. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 8, 1377–1384 (1989).
    CAS PubMed PubMed Central Google Scholar
  46. Chinkers, M. et al. A membrane form of guanylyl cyclase is an atrial naturetic peptide receptor. Nature 338, 78–83 (1989).
    CAS PubMed Google Scholar
  47. Murad, F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog. Horm. Res. 53, 43–59 (1998).
    CAS PubMed Google Scholar
  48. Krebs, E. G. & Beavo, J. A. Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923–959 (1979).
    CAS PubMed Google Scholar
  49. Nestler, E. J. & Greengard, P. Protein phosphorylation in the brain. Nature 305, 583–588 (1983).
    CAS PubMed Google Scholar
  50. Langan, T. A. Histone phosphorylation: stimulation by adenosine 3′,5′-monophosphate. Science 162, 579–580 (1968).
    CAS PubMed Google Scholar
  51. Lohmann, S. M., Walter, U. & Greengard, P. Identification of endogenous substrate proteins for cAMP-dependent protein kinase in bovine brain. J. Biol. Chem. 255, 9985–9992 (1980).
    CAS PubMed Google Scholar
  52. Steinberg, D. et al. Hormonal regulation of lipase, phosphorylase and glycogen synthase in adipose tissue. Adv. Cyclic Nucleotide Res. 5, 549–568 (1975).
    CAS PubMed Google Scholar
  53. Beavo, J. A., Hardman, J. G. & Sutherland, E. W. Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate. J. Biol. Chem. 246, 3841–3846 (1971).
    CAS PubMed Google Scholar
  54. Aravind, L. & Ponting, C. P. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22, 458–459 (1997).
    CAS PubMed Google Scholar
  55. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Annu. Rev. Pharmacol. Toxicol. 24, 275–328 (1984).
    Google Scholar
  56. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).
    CAS PubMed Google Scholar
  57. de Rooij, J. et al. EPAC is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998).
    CAS Google Scholar
  58. Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275–2279 (1998).
    CAS Google Scholar
  59. Wicks, W. D. Induction of hepatic enzymes by adenosine 3′,5′-monophosphate in organ culture. J. Biol. Chem. 244, 3941–3950 (1969).
    CAS PubMed Google Scholar
  60. Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl Acad. Sci. USA 83, 6682–6686 (1986).
    CAS PubMed Google Scholar
  61. Short, J. M., Wynshaw-Boris, A., Short, H. P. & Hanson, R. W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J. Biol. Chem. 261, 9721–9726 (1986).
    CAS PubMed Google Scholar
  62. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell Biol. 2, 599–609 (2001).
    CAS Google Scholar
  63. Pittenger, C. et al. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447–462 (2002).
    CAS Google Scholar
  64. Torgersen, K. M., Vang, T., Abrahamsen, H., Yaqub, S. & Tasken, K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal. 14, 1–9 (2002).
    CAS PubMed Google Scholar
  65. Cheung, W. Y. Cyclic nucleotide 3′,5′-nucleotide phosphodiesterase: evidence for and properties of a protein activator. Biochem. Biophys. Res. Comm. 38, 533–538 (1970).
    CAS PubMed Google Scholar
  66. Rall, T. Introduction. Adv. Cyclic Nucleotide Res. 5, 1–2 (1975).
    Google Scholar
  67. Brunton, L. L., Hayes, J. S. & Mayer, S. E. Functional compartmentation of cyclic AMP and protein kinase in heart. Adv. Cyclic Nucleotide Res. 14, 391–397 (1981).
    CAS PubMed Google Scholar
  68. Buxton, I. L. & Brunton, L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258, 10233–10239 (1983).
    CAS PubMed Google Scholar
  69. Steinberg, S. F. & Brunton, L. L. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41, 751–773 (2001).
    CAS PubMed Google Scholar
  70. MacMillan-Crow, L. A. & Lincoln, T. M. High-affinity binding and localization of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin. Biochemistry 33, 8035–8043 (1994).
    CAS PubMed Google Scholar
  71. Vaandrager, A. B. et al. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl− channel activation. Proc. Natl Acad. Sci. USA 95, 1466–1471 (1998).
    CAS PubMed Google Scholar
  72. Feron, O. et al. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J. Biol. Chem. 273, 30249–30254 (1998).
    CAS PubMed Google Scholar
  73. Lucas, K. A. et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52, 375–413 (2000).
    CAS PubMed Google Scholar
  74. Michel, J. J. C. & Scott, J. D. AKAP mediated signal transduction. Annu. Rev. Pharmacol. Toxicol. 42, 235–257 (2002).
    CAS PubMed Google Scholar
  75. Chen, Q., Lin, R. Y. & Rubin, C. S. Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J. Biol. Chem. 272, 15247–15257 (1997).
    CAS PubMed Google Scholar
  76. Dodge, K. L. et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 20, 1921–1930 (2001).
    CAS PubMed PubMed Central Google Scholar
  77. Baillie, G. S. et al. TAPAS-1, a novel microdomain within a unique N-terminal region of PDE4A1 cAMP-specific PDE that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J. Biol. Chem. 277, 28298–28309 (2002).
    CAS PubMed Google Scholar
  78. Goaillard, J. M., Vincent, P. & Fischmeister, R. Simultaneous measurements of intracellular cAMP and l-type Ca2+ current in single frog ventricular myocytes. J. Physiol. (Lond.) 530, 79–91 (2001).
    CAS Google Scholar
  79. Walseth, T. F., Graff, G., Krick, T. P. & Goldberg, N. D. The fate of 18O in guanosine monophosphate during enzymic transformations leading to guanosine 3′,5′-monophosphate generation. J. Biol. Chem. 256, 2176–2179 (1981).
    CAS PubMed Google Scholar
  80. Goldberg, N. D. et al. Cyclic AMP metabolism in intact platelets determined by 18O incorporation into adenine nucleotide α-phosphoryls. Adv. Cyclic Nucleotide Protein Phosphatase Res. 16, 363–379 (1984).
    CAS Google Scholar
  81. Ames, A. D. et al. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J. Biol. Chem. 261, 13034–13042 (1986).
    CAS PubMed Google Scholar
  82. Walseth, T. F., Gander, J. E., Eide, S. J., Krick, T. P. & Goldberg, N. D. 18O labeling of adenine nucleotide α-phosphoryls in platelets. Contribution by phosphodiesterase-catalyzed hydrolysis of cAMP. J. Biol. Chem. 258, 1544–1558 (1983).
    CAS PubMed Google Scholar
  83. Breer, H., Boekhoff, I. & Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature 345, 65–68 (1990).
    CAS PubMed Google Scholar
  84. Goldberg, N. D., Ames, A. A. D., Gander, J. E. & Walseth, T. F. Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide α-phosphoryls corresponds with intensity of photic stimulation. J. Biol. Chem. 258, 9213–9219 (1983).
    CAS PubMed Google Scholar
  85. Rich, T. C., Tse, T. E., Rohan, J. G., Schaack, J. & Karpen, J. W. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J. Gen. Physiol. 118, 63–78 (2001).
    CAS PubMed PubMed Central Google Scholar
  86. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–15002 (2001).
    CAS PubMed Google Scholar
  87. Honda, A. et al. Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl Acad. Sci. USA 98, 2437–2442 (2001).
    CAS PubMed Google Scholar
  88. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol 2, 25–29 (2000).
    CAS PubMed Google Scholar
  89. Adams, S. et al. Imaging of cAMP signals and A-kinase translocation in single living cells. Adv Second Messenger Phosphoprotein Res. 28, 167–170 (1993).
    CAS PubMed Google Scholar
  90. Adams, S. R., Harootunian, A. T., Buechler, Y. J., Taylor, S. S. & Tsien, R. Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694–697 (1991).
    CAS Google Scholar
  91. Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1171–1175 (2002).
    Google Scholar
  92. Hofmann, A., Ammendola, A. & Schlossmann, J. Rising behind NO: cGMP-dependent protein kinases. J. Cell Sci. 113, 1671–1676 (2000).
    CAS PubMed Google Scholar

Download references