Cyclic nucleotide research — still expanding after half a century (original) (raw)
References
Robison, G. A., Butcher, R. W. & Sutherland, E. W. cAMP (Academic, New York and London, 1971). Google Scholar
Wosilait, W. D. & Sutherland, E. W. The relationship of epinephrine and glucagon to liver phosphorylase. II. Enzymatic inactivation of liver phosphorylase. J. Biol. Chem.218, 469–481 (1957). Google Scholar
Krebs, E. & Fischer, E. The phosphorylase B to A converting enzyme of rabbit skeletal muscle. Biochim. Biophys. Acta1989, 302–309 (1956). Google Scholar
Rall, T. W., Sutherland, E. W. & Wosilait, W. D. The relationship of epinephrine and glucagon to liver phosphorylase. III. Reactivation of liver phosphorylase in slices and in extracts. J. Biol. Chem.218, 483–495 (1957). Google Scholar
Rall, T., Sutherland, E. & Berthet, J. The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. IV. J. Biol. Chem.224, 463–475 (1957). CASPubMed Google Scholar
Sutherland, E. W. & Rall, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem.232, 1077–1091 (1958). CASPubMed Google Scholar
Bourne, H., Rall, T. W. & Gallagher, G. L. Getting the message across. J. NIH Res.2, 77–78 (1990). Google Scholar
Cook, W. H., Lipkin, D. & Markham, R. The formation of cyclic dianhydrodiadenylic acid by the alkaline degradation of adenosine-5′-triphosphoric acid. J. Am. Chem. Soc.79, 3607–3608 (1957). CAS Google Scholar
Lipkin, D., Cook, W. H. & Markham, R. Adenosine-3′,5′-phosphoric acid: a proof of structure. J. Am. Chem. Soc.81, 6198–6203 (1959). CAS Google Scholar
Robinson, G. A, Nahas, G. G. & Triner, L. (eds) Cyclic AMP and Cell Function. Ann. NY Acad. Sci.185 (1970).
Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem.243, 3763–3765 (1968). CASPubMed Google Scholar
Brooker, G., Thomas, L. & Appleman, M. M. The assay of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in biological materials by enzymatic radio-isotopic displacement. Biochemistry7, 4177–4181 (1968). CASPubMed Google Scholar
Goldberg, N. D., O'Toole, A. G. & Haddox, M. K. Analysis of cyclic AMP and cyclic GMP by enzymic cycling procedures. Adv. Cyclic Nucleotide Res.2, 63–80 (1972). CASPubMed Google Scholar
Steiner, A. L., Parker, C. W. & Kipnis, D. M. The measurement of cyclic nucleotides by radioimmunoassay. Adv. Biochem. Psychopharmacol.3, 89–111 (1970). CASPubMed Google Scholar
Gilman, A. G. A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Natl Acad. Sci. USA67, 305–312 (1970). CASPubMed Google Scholar
Tao, M., Salas, M. L. & Lipmann, F. Mechanism of activation by adenosine 3′,5′-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc. Natl Acad. Sci. USA67, 408–414 (1970). CASPubMed Google Scholar
Brostrom, M. A., Reimann, E. M., Walsh, D. A. & Krebs, E. G. A cyclic 3′,5′-AMP-stimulated protein kinase from cardiac muscle. Adv. Enzyme Regul.8, 191–203 (1970). CASPubMed Google Scholar
Gill, G. N. & Garren, L. D. Role of the receptor in the mechanism of action of adenosine 3′,5′- cyclic monophosphate. Proc. Natl Acad. Sci. USA68, 786–790 (1971). CASPubMed Google Scholar
Murad, F., Manganiello, V. & Vaughan, M. A simple, sensitive protein-binding assay for guanosine 3′,5′-monophosphate. Proc. Natl Acad. Sci. USA68, 736–739 (1971). CASPubMed Google Scholar
Harper, J. F. & Brooker, G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′0 acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res.1, 207–218 (1975). CASPubMed Google Scholar
Pohl, S. L., Birnbaumer, L. & Rodbell, M. Glucagon-sensitive adenyl cylase in plasma membrane of hepatic parenchymal cells. Science164, 566–567 (1969). CASPubMed Google Scholar
Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. Properties of the adenyl cyclase systems in liver and adipose cells: the mode of action of hormones. Acta Diabetol. Lat.7 (Suppl. 1), 9–63 (1970). PubMed Google Scholar
Pohl, S. L., Krans, H. M., Kozyreff, V., Birnbaumer, L. & Rodbell, M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J. Biol. Chem.246, 4447–4454 (1971). CASPubMed Google Scholar
Rodbell, M., Krans, H. M., Pohl, S. L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem.246, 1872–1876 (1971). CASPubMed Google Scholar
Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem.246, 1877–1882 (1971). CASPubMed Google Scholar
Cassel, D. & Selinger, Z. Mechanism of adenylate cyclase activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc. Natl Acad. Sci USA75, 4155–4159 (1978). CASPubMed Google Scholar
Daniel, V., Litwack, G. & Tomkins, G. M. Induction of cytolysis of cultured lymphoma cells by adenosine 3′,5′- cyclic monophosphate and the isolation of resistant variants. Proc. Natl Acad. Sci. USA70, 76–79 (1973). CASPubMed Google Scholar
Bourne, H. R., Coffino, P. & Tomkins, G. M. Somatic genetic analysis of cyclic AMP action: characterization of unresponsive mutants. J. Cell. Physiol.85, 611–620 (1975). CASPubMed Google Scholar
Ross, E. M. & Gilman, A. G. Resolution of some components of adenylate cyclase necessary for catalytic activity. J. Biol. Chem.252, 6966–6969 (1977). CASPubMed Google Scholar
Ross, E. M. & Gilman, A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interactions of solubilized components with receptor-replete membranes. Proc. Natl Acad. Sci. USA74, 3715–3719 (1977). CASPubMed Google Scholar
Ross, E. M., Howlett, A. C., Ferguson, K. M. & Gilman, A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem.253, 6401–6412 (1978). CASPubMed Google Scholar
Pfeuffer, T. & Thomas, R. Stimulation of adenylate cyclase from avian erythrocyte membranes by GTP analogs. Separation and partial purification of a GTP-binding protein. Hoppe. Seyler's Z. Physiol. Chem.355, 1237–1238 (1974). CASPubMed Google Scholar
Miki, N., Baraban, J. M., Keirns, J. J., Boyce, J. J. & Bitensky, M. W. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J. Biol. Chem.250, 6320–6327 (1975). CASPubMed Google Scholar
Stryer, L. The molecules of visual excitation. Sci. Am.257, 42–50 (1987). CASPubMed Google Scholar
Hanoune, J. & Defer, N. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol.41, 145–174 (2001). CASPubMed Google Scholar
Ashman, D. F., Lipton, R., Melicow, M. M. & Price, T. D. Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem. Biophys. Res. Commun.11, 330–334 (1963). CASPubMed Google Scholar
Hardman, J. G., Davis, J. W. & Sutherland, E. W. Measurement of guanosine 3′,5′-monophosphate and other cyclic nucleotides. Variations in urinary excretion with hormonal state of the rat. J. Biol. Chem.241, 4812–4815 (1966). CASPubMed Google Scholar
Hardman, J. G. & Sutherland, E. W. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′- monophosphate from guanosine trihosphate. J. Biol. Chem.244, 6363–6370 (1969). CASPubMed Google Scholar
Furchgott, R. F. & Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature288, 373–376 (1980). CASPubMed Google Scholar
Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA84, 9265–9269 (1987). CASPubMed Google Scholar
Ignarro, L. J., Byrns, R. E. & Wood, K. S. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ. Res.60, 82–92 (1987). CASPubMed Google Scholar
Rapoport, R. M., Waldman, S. A., Ginsburg, R., Molina, C. R. & Murad, F. Effects of glyceryl trinitrate on endothelium-dependent and -independent relaxation and cyclic GMP levels in rat aorta and human coronary artery. J. Cardiovasc. Pharmacol.10, 82–89 (1987). CASPubMed Google Scholar
Waldman, S. A., Rapoport, R. M. & Murad, F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J. Biol. Chem.259, 14332–14334 (1984). CASPubMed Google Scholar
Kuno, T. et al. Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J. Biol. Chem.261, 5817–5823 (1986). CASPubMed Google Scholar
Lowe, D. G. et al. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J.8, 1377–1384 (1989). CASPubMedPubMed Central Google Scholar
Chinkers, M. et al. A membrane form of guanylyl cyclase is an atrial naturetic peptide receptor. Nature338, 78–83 (1989). CASPubMed Google Scholar
Murad, F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog. Horm. Res.53, 43–59 (1998). CASPubMed Google Scholar
Krebs, E. G. & Beavo, J. A. Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem.48, 923–959 (1979). CASPubMed Google Scholar
Nestler, E. J. & Greengard, P. Protein phosphorylation in the brain. Nature305, 583–588 (1983). CASPubMed Google Scholar
Langan, T. A. Histone phosphorylation: stimulation by adenosine 3′,5′-monophosphate. Science162, 579–580 (1968). CASPubMed Google Scholar
Lohmann, S. M., Walter, U. & Greengard, P. Identification of endogenous substrate proteins for cAMP-dependent protein kinase in bovine brain. J. Biol. Chem.255, 9985–9992 (1980). CASPubMed Google Scholar
Steinberg, D. et al. Hormonal regulation of lipase, phosphorylase and glycogen synthase in adipose tissue. Adv. Cyclic Nucleotide Res.5, 549–568 (1975). CASPubMed Google Scholar
Beavo, J. A., Hardman, J. G. & Sutherland, E. W. Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate. J. Biol. Chem.246, 3841–3846 (1971). CASPubMed Google Scholar
Aravind, L. & Ponting, C. P. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci.22, 458–459 (1997). CASPubMed Google Scholar
Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Annu. Rev. Pharmacol. Toxicol.24, 275–328 (1984). Google Scholar
Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev.82, 769–824 (2002). CASPubMed Google Scholar
de Rooij, J. et al. EPAC is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature396, 474–477 (1998). CAS Google Scholar
Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science282, 2275–2279 (1998). CAS Google Scholar
Wicks, W. D. Induction of hepatic enzymes by adenosine 3′,5′-monophosphate in organ culture. J. Biol. Chem.244, 3941–3950 (1969). CASPubMed Google Scholar
Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl Acad. Sci. USA83, 6682–6686 (1986). CASPubMed Google Scholar
Short, J. M., Wynshaw-Boris, A., Short, H. P. & Hanson, R. W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J. Biol. Chem.261, 9721–9726 (1986). CASPubMed Google Scholar
Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell Biol.2, 599–609 (2001). CAS Google Scholar
Pittenger, C. et al. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron34, 447–462 (2002). CAS Google Scholar
Torgersen, K. M., Vang, T., Abrahamsen, H., Yaqub, S. & Tasken, K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal.14, 1–9 (2002). CASPubMed Google Scholar
Cheung, W. Y. Cyclic nucleotide 3′,5′-nucleotide phosphodiesterase: evidence for and properties of a protein activator. Biochem. Biophys. Res. Comm.38, 533–538 (1970). CASPubMed Google Scholar
Rall, T. Introduction. Adv. Cyclic Nucleotide Res.5, 1–2 (1975). Google Scholar
Brunton, L. L., Hayes, J. S. & Mayer, S. E. Functional compartmentation of cyclic AMP and protein kinase in heart. Adv. Cyclic Nucleotide Res.14, 391–397 (1981). CASPubMed Google Scholar
Buxton, I. L. & Brunton, L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem.258, 10233–10239 (1983). CASPubMed Google Scholar
Steinberg, S. F. & Brunton, L. L. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol.41, 751–773 (2001). CASPubMed Google Scholar
MacMillan-Crow, L. A. & Lincoln, T. M. High-affinity binding and localization of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin. Biochemistry33, 8035–8043 (1994). CASPubMed Google Scholar
Vaandrager, A. B. et al. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl− channel activation. Proc. Natl Acad. Sci. USA95, 1466–1471 (1998). CASPubMed Google Scholar
Feron, O. et al. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J. Biol. Chem.273, 30249–30254 (1998). CASPubMed Google Scholar
Lucas, K. A. et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev.52, 375–413 (2000). CASPubMed Google Scholar
Michel, J. J. C. & Scott, J. D. AKAP mediated signal transduction. Annu. Rev. Pharmacol. Toxicol.42, 235–257 (2002). CASPubMed Google Scholar
Chen, Q., Lin, R. Y. & Rubin, C. S. Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J. Biol. Chem.272, 15247–15257 (1997). CASPubMed Google Scholar
Dodge, K. L. et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J.20, 1921–1930 (2001). CASPubMedPubMed Central Google Scholar
Baillie, G. S. et al. TAPAS-1, a novel microdomain within a unique N-terminal region of PDE4A1 cAMP-specific PDE that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J. Biol. Chem.277, 28298–28309 (2002). CASPubMed Google Scholar
Goaillard, J. M., Vincent, P. & Fischmeister, R. Simultaneous measurements of intracellular cAMP and l-type Ca2+ current in single frog ventricular myocytes. J. Physiol. (Lond.)530, 79–91 (2001). CAS Google Scholar
Walseth, T. F., Graff, G., Krick, T. P. & Goldberg, N. D. The fate of 18O in guanosine monophosphate during enzymic transformations leading to guanosine 3′,5′-monophosphate generation. J. Biol. Chem.256, 2176–2179 (1981). CASPubMed Google Scholar
Goldberg, N. D. et al. Cyclic AMP metabolism in intact platelets determined by 18O incorporation into adenine nucleotide α-phosphoryls. Adv. Cyclic Nucleotide Protein Phosphatase Res.16, 363–379 (1984). CAS Google Scholar
Ames, A. D. et al. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J. Biol. Chem.261, 13034–13042 (1986). CASPubMed Google Scholar
Walseth, T. F., Gander, J. E., Eide, S. J., Krick, T. P. & Goldberg, N. D. 18O labeling of adenine nucleotide α-phosphoryls in platelets. Contribution by phosphodiesterase-catalyzed hydrolysis of cAMP. J. Biol. Chem.258, 1544–1558 (1983). CASPubMed Google Scholar
Breer, H., Boekhoff, I. & Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature345, 65–68 (1990). CASPubMed Google Scholar
Goldberg, N. D., Ames, A. A. D., Gander, J. E. & Walseth, T. F. Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide α-phosphoryls corresponds with intensity of photic stimulation. J. Biol. Chem.258, 9213–9219 (1983). CASPubMed Google Scholar
Rich, T. C., Tse, T. E., Rohan, J. G., Schaack, J. & Karpen, J. W. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J. Gen. Physiol.118, 63–78 (2001). CASPubMedPubMed Central Google Scholar
Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA98, 14997–15002 (2001). CASPubMed Google Scholar
Honda, A. et al. Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl Acad. Sci. USA98, 2437–2442 (2001). CASPubMed Google Scholar
Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol2, 25–29 (2000). CASPubMed Google Scholar
Adams, S. et al. Imaging of cAMP signals and A-kinase translocation in single living cells. Adv Second Messenger Phosphoprotein Res.28, 167–170 (1993). CASPubMed Google Scholar
Adams, S. R., Harootunian, A. T., Buechler, Y. J., Taylor, S. S. & Tsien, R. Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature349, 694–697 (1991). CAS Google Scholar
Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science295, 1171–1175 (2002). Google Scholar
Hofmann, A., Ammendola, A. & Schlossmann, J. Rising behind NO: cGMP-dependent protein kinases. J. Cell Sci.113, 1671–1676 (2000). CASPubMed Google Scholar