Immunoglobulin transport across polarized epithelial cells (original) (raw)
Corthesy, B. & Kraehenbuhl, J.-P. Antibody-mediated protection of mucosal surfaces. Curr. Top. Microbiol. Immunol.236, 93–111 (1999). CASPubMed Google Scholar
Lamm, M. Interaction of antigens and antibodies at mucosal surfaces. Annu. Rev. Microbiol.51, 311–340 (1997). CASPubMed Google Scholar
Didierlaurent, A., Sirard, J.-C., Kraehenbuhl, J.-P. & Neutra, M. R. How the gut senses its content. Cell Microbiol.4, 61–72 (2002). CASPubMed Google Scholar
Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J.-P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nature Immunol.2, 1004–1009 (2001). CAS Google Scholar
Hunziker, W. & Kraehenbuhl, J.-P. Epithelial transcytosis of immunoglobulins. J. Mammary Gland Biol. Neoplasia3, 287–302 (1998). CASPubMed Google Scholar
Mostov, K. E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol.12, 483–490 (2000). CASPubMed Google Scholar
Bartles, J. R., Ferraci, H. M., Stieger, B. & Hubbard, A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: Comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J. Cell Biol.105, 1241–1251 (1987). CASPubMed Google Scholar
Mostov, K. E. Transepithelial transport of immunoglobulins. Annu. Rev. Immunol.12, 63–84 (1994). CASPubMed Google Scholar
Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science288, 2222–2226 (2000).Describes a T-cell-independent mechanism for the production of IgA directed against commensal bacteria. CASPubMed Google Scholar
Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation of IgA-producing cells in the gut lamina propria. Nature413, 639–643 (2001). CASPubMed Google Scholar
Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol.2, 361–367 (2001).Shows that dendritic cells can directly sample the gut microflora. CAS Google Scholar
Mostov, K. E., Friedlander, M. & Blobel, G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature308, 37–43 (1984). CASPubMed Google Scholar
Shimada, S.-I. et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J. Immunol.163, 5367–5373 (1999). CASPubMed Google Scholar
Zhang, J.-R. et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell102, 827–837 (2000).This paper identifies the pIgR as a receptor for Pneumococci. CASPubMed Google Scholar
Fubara, E. S. & Freter, R. Protection against enteric bacterial infection by secretory IgA antibodies. J. Immunol.111, 395–403 (1973). CASPubMed Google Scholar
Outlaw, M. C. & Dimmock, N. J. Mechanism of neutralization of influenza virus on mouse tracheal epithelial cells by mouse monoclonal polymeric IgA and polyclonal IgM directed against the viral haemaglutinin. J. Gen. Virol.71, 69–76 (1990). CASPubMed Google Scholar
Enriquez, F. J. & Riggs, M. W. Role of immunoglobulin A monoclonal antibodies against P23 in controlling murine Cryptosporidium parvum infection. Infect. Immun.66, 4469–4473 (1998). CASPubMedPubMed Central Google Scholar
Williams, R. C. & Gibbons, R. J. Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science177, 697–699 (1972). CASPubMed Google Scholar
Alfsen, A., Iniguez, P., Bouguyon, E. & Bomsel, M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol.166, 6257–6265 (2001). CASPubMed Google Scholar
Hocini, H. & Bomsel, M. Infectious human immunodeficiency virus can rapidly penetrate a tight human epithelial barrier by transcytosis in a process impaired by mucosal immunoglobulins. J. Infect. Dis.179, S448–S453 (1999). CASPubMed Google Scholar
Vaerman, J. P., Derick-Langendries, A., Rits, M. & Delacroix, D. Neutralization of cholera toxin by rat bile secretory IgA antibodies. Immunol.54, 601–603 (1985). CAS Google Scholar
Fujioka, H. et al. Immunocytochemical colocalization of specific immunoglobulin A with sendai virus protein in infected polarized epithelium. J. Exp. Med.188, 1223–1229 (1998). CASPubMedPubMed Central Google Scholar
Mazanec, M. B., Kaetzel, C. S., Lamm, M., Fletcher, D. & Nedrud, J. G. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl Acad. Sci. USA89, 6901–6905 (1992).The first demonstration of the intracellular virus neutralization by pIgR–dIgA. CASPubMedPubMed Central Google Scholar
Kaetzel, C. S., Robinson, J. K., Chintalachavuru, K. R., Vaerman, J.-P. & Lamm, M. The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function of IgA. Proc. Natl Acad. Sci. USA88, 8796–8780 (1991). CASPubMedPubMed Central Google Scholar
Simister, N. E. & Mostov, K. E. An Fc receptor structurally related to MHC class I antigens. Nature337, 184–187 (1989). CASPubMed Google Scholar
Burmeister, W. P., Gastinel, L. N., Simister, N. E., Blum, M. L. & Bjorkman, P. J. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature372, 336–343 (1994).Determination of the crystal structure of FcRn. CASPubMed Google Scholar
Praetor, A. & Hunziker, W. β2-microglobulin is important for cell surface expression and pH-dependent IgG binding of human FcRn. J. Cell Sci.115, 2389–2397 (2002). CASPubMed Google Scholar
Rodewald, R. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J. Cell Biol.71, 666–670 (1976). CASPubMed Google Scholar
Rodewald, R. & Abrahamson, D. R. Ciba Foundation Symposium 92, 209–232 (Pitman Books Ltd, London, 1982).
Roberts, D. M., Guenthert, M. & Rodewald, R. Isolation and characterization of the Fc receptor from fetal yolk sac of the rat. J. Cell Biol.111, 1867–1876 (1990).Shows that IgG binding to FcRn could occur in endosomes and not only at the plasma membrane. CASPubMed Google Scholar
Leach, J. L. et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast. J. Immunol.157, 3317–3322 (1996). CASPubMed Google Scholar
Brambell, F. W. R., Hemmings, W. A. & Morris, I. G. A theoretical model of gammaglobulin catabolism. Nature203, 1352–1355 (1964). CASPubMed Google Scholar
Borvak, J. et al. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int. Immunol.10, 1289–1298 (1998). CASPubMed Google Scholar
Ghetie, V. et al. Abnormally short serum half-lives of IgG in β2-microglobulin-deficient mice. Eur. J. Immunol.26, 690–696 (1996).Confirms that FcRn is important in IgG catabolism. CASPubMed Google Scholar
Ghetie, V. & Ward, E. S. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu. Rev. Immunol.18, 739–766 (2000). CASPubMed Google Scholar
Israel, E. J. et al. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunol.92, 69–74 (1997). CAS Google Scholar
Dickinson, B. L. et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest.104, 903–911 (1999). CASPubMedPubMed Central Google Scholar
Spiekermann, G. M. et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J. Exp. Med.196, 303–310 (2002).Demonstrates that FcRn can transport antigens from the luminal to serosal surface of the epithelium. CASPubMedPubMed Central Google Scholar
Merill, W. W., Naegel, G. P., Olchowski, J. J. & Reynolds, H. Y. Immunoglobulin G subclass proteins in serum and lavage fluid of normal subjects. Quantitation and comparison with immunoglobulins A and E. Am. Rev. Respir. Dis.131, 584–587 (1985). Google Scholar
Kitz, R., Ahrens, P. & Zielen, S. Immunoglobulin levels in bronchoalveolar lavage fluid of children with chronic chest disease. Pediatr. Pulmonol.29, 443–451 (2000). CASPubMed Google Scholar
Okamoto, C. T., Shia, S.-P., Bird, C., Mostov, K. E. & Roth, M. G. The cytoplasmic domain of the polymeric immunoglobulin receptor contains two internalization signals that are distinct from its basolateral sorting signal. J. Biol. Chem.267, 9925–9932 (1992). CASPubMed Google Scholar
Okamoto, C. T., Song, W., Bomsel, M. & Mostov, K. E. Rapid internalization of the polymeric immunoglobulin receptor requires phosphorylated serine 726. J. Biol. Chem.269, 15676–15682 (1994). CASPubMed Google Scholar
Bucci, C. et al. Rab5a is a common component of the apical and basolateral endocytic machinery in polarized epithelial cells. Proc. Natl Acad. Sci. USA91, 5061–5065 (1994). CASPubMedPubMed Central Google Scholar
Leung, S.-M., Ruiz, W. G. & Apodaca, G. Sorting of membrane and fluid at the apical pole of polarized MDCK cells. Mol. Biol. Cell11 (2000).
Apodaca, G., Katz, L. A. & Mostov, K. E. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol.125, 67–86 (1994). CASPubMed Google Scholar
Wang, E. et al. Apical and basolateral pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic1, 480–493 (2000). CASPubMed Google Scholar
Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol.145, 123–139 (1999). CASPubMedPubMed Central Google Scholar
Odorizzi, G., Pearse, A., Domingo, D., Trowbridge, I. S. & Hopkins, C. R. Apical and basolateral endosomes of MDCK cells are interconnected and contain a polarized sorting mechanism. J. Cell Biol.135, 139–152 (1996). CASPubMed Google Scholar
Brown, P. S. et al. Definition of distinct compartments in polarized Madin-Darby Canine Kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic1, 124–140 (2000). CASPubMed Google Scholar
Hemery, L., Durand-Schneider, A.-M., Feldmann, G., Vaerman, J.-P. & Maurice, M. The transcytotic pathway of an apical plasma membrane protein (B10) in hepatocytes is similar to that of IgA and occurs via a tubular pericentriolar compartment. J. Cell Sci.109, 1215–1227 (1996). CASPubMed Google Scholar
Ihrke, G. et al. WIF-B cells: an in vitro model for studies of hepatocyte polarity. J. Cell Biol.123, 1761–75 (1993). CASPubMed Google Scholar
Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol.140, 1039–1053 (1998). CASPubMedPubMed Central Google Scholar
Hunziker, W. & Peters, P. J. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J. Biol. Chem.273, 15734–15741 (1998). CASPubMed Google Scholar
Barroso, M. & Sztul, E. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J. Cell Biol.124, 83–100 (1994). CASPubMed Google Scholar
Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell10, 47–61 (1999). CASPubMedPubMed Central Google Scholar
Wang, X., Kumar, R., Navarre, J., Casanova, J. E. & Goldenring, J. R. Regulation of vesicle trafficking in Madin-Darby canine kidney cells by Rab11a and Rab25. J. Biol. Chem.275, 29138–29146 (2000). CASPubMed Google Scholar
Breitfeld, P. P., Harris, J. M. & Mostov, K. M. Postendocytotic sorting of the ligand for the polymeric immunoglobulin receptor in Madin-Darby canine kidney cells. J. Cell Biol.109, 475–486 (1989). CASPubMed Google Scholar
Ellinger, I., Schwab, M., Stefanescu, A., Hunziker, W. & Fuchs, R. IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur. J. Immunol.29, 733–744 (1999). CASPubMed Google Scholar
Praetor, A., Ellinger, I. & Hunziker, W. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J. Cell Sci.112, 2291–2299 (1999). CASPubMed Google Scholar
McCarthy, K. M., Yoong, Y. & Simister, N. E. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J. Cell Sci.113, 1277–1285 (2000). CASPubMed Google Scholar
Antohe, F., Radulescu, L., Gafencu, A., Ghetie, V. & Simionescu, M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Human Immunol.62, 93–105 (2001). CAS Google Scholar
Abrahamson, D. R. & Rodewald, R. Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J. Cell Biol.91, 270–280 (1981). CASPubMed Google Scholar
Leach, L., Eaton, B. M., Firth, J. A. & Contractor, S. F. Uptake and intracellular routing of peroxidase-conjugated immunoglobulin-G by the perfused human placenta. Cell Tissue Res.261, 383–388 (1990). CASPubMed Google Scholar
Wu, Z. & Simister, N. E. Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J. Biol. Chem276, 5240–5247 (2001). CASPubMed Google Scholar
Futter, C. E. et al. In polarized MDCK cells basolateral vesicles arise from clathrin-gamma-adaptin-coated domains on endosomal tubules. J. Cell Biol.141, 611–623 (1998). CASPubMedPubMed Central Google Scholar
Hunziker, W., Mâle, P. & Mellman, I. Differential microtubule requirements for transcytosis in MDCK cells. EMBO J.9, 3515–3525 (1990). CASPubMedPubMed Central Google Scholar
Maples, C. J., Ruiz, W. G. & Apodaca, G. Both microtubules and actin filaments are required for efficient postendocytic traffic of the polymeric immunoglobulin receptor in polarized Madin-Darby canine kidney cells. J. Biol. Chem.272, 6741–6751 (1997). CASPubMed Google Scholar
Leung, S.-M. et al. Modulation of endocytic traffic in polarized MDCK cells by the small GTPase RhoA. Mol. Biol. Cell10, 4369–4384 (1999). CASPubMedPubMed Central Google Scholar
Jou, T.-S. et al. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol. Biol. Cell11, 287–304 (2000). CASPubMedPubMed Central Google Scholar
Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized MDCK cells. Mol. Biol. Cell12, 2257–2274 (2001). CASPubMedPubMed Central Google Scholar
van IJzendoorn, S. C. D., Tuvim, M. J., Weimbs, T., Dickey, B. F. & Mostov, K. E. Direct interactions between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev. Cell2, 219–228 (2002).Demonstrates that dIgA binding stimulates pIgR transcytosis through the action of the Rab3b GTPase. CASPubMed Google Scholar
Bomsel, M. & Mostov, K. E. Possible role of both the α and βγ subunits of the heterotrimeric G protein, Gs, in transcytosis of the polymeric immunoglobulin receptor. J. Biol. Chem.268, 25824–25835 (1993). CASPubMed Google Scholar
Hansen, S. H. & Casanova, J. E. Gsα stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A. J. Cell Biol.126, 677–688 (1994). CASPubMed Google Scholar
Barroso, M. R., Nelson, D. S. & Sztul, E. S. TAP/p115, a general fusion factor is homologous to yeast US01 and is required for stable binding of vesicles to target membrane. Proc. Natl Acad. Sci. USA92, 527–531 (1995). CASPubMedPubMed Central Google Scholar
Apodaca, G., Enrich, C. & Mostov, K. E. The calmodulin antagonist, W-13, alters transcytosis, recycling, and the morphology of the endocytic pathway in MDCK cells. J. Biol. Chem.269, 19005–19013 (1994). CASPubMed Google Scholar
Chapin, S., Enrich, C., Aroeti, B., Havel, R. & Mostov, K. Calmodulin binds to the basolateral targeting signal of the polymeric immunoglobulin receptor. J. Biol. Chem.271, 1336–1342 (1996). CASPubMed Google Scholar
Hansen, S. H., Olsson, A. & Casanova, J. E. Wortmannin, an inhibitor of phosphoinositide 3-kinase, inhibits transcytosis in polarized epithelial cells. J. Biol. Chem.270, 28425–28432 (1995). CASPubMed Google Scholar
Tuma, P. L., Nyasae, L. K., Backer, J. M. & Hubbard, A. L. Vps34p differentially regulates endocytosis from the apical and basolateral domains in polarized hepatic cells. J. Cell Biol.154, 1197–1208 (2001). CASPubMedPubMed Central Google Scholar
Low, S. H. et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J. Cell Biol.141, 1503–1513 (1998). CASPubMedPubMed Central Google Scholar
Calvo, M. et al. Cellubrevin is present in the basolateral endocytic compartment of hepatocytes and follows the transcytotic pathway after IgA internalization. J. Biol. Chem.275, 7910–7917 (2000). CASPubMed Google Scholar
Apodaca, G., Cardone, M. H., Whiteheart, S. W., DasGupta, B. R. & Mostov, K. E. Reconstitution of transcytosis in SLO-permeabilized MDCK cells: existence of an NSF dependent fusion mechanism with the apical surface of MDCK cells. EMBO J.15, 1471–1481 (1996). CASPubMedPubMed Central Google Scholar
Cardone, M. H. et al. Signal transduction by the polymeric immunoglobulin receptor suggests a role in regulation of receptor transcytosis. J. Cell Biol.133, 1–9 (1996). Google Scholar
Cardone, M. H., Smith, B. L., Song, W., Mochley-Rosen, D. & Mostov, K. E. Phorbol myristate acetate-mediated stimulation of transcytosis and apical recycling in MDCK cells. J. Cell Biol.124, 717–727 (1994). CASPubMed Google Scholar
Luton, F., Vergés, M., Vaerman, J.-P., Sudol, M. & Mostov, K. E. The src family protein tyrosine kinase p62yes control polymeric IgA transcytosis in vivo. Mol. Cell4, 627–632 (1999). CASPubMed Google Scholar
Luton, F., Cardone, M. H., Zhang, M. & Mostov, K. E. Role of tyrosine phosphorylation in ligand-induced regulation of transcytosis of the polymeric Ig receptor. Mol. Biol. Cell9, 1787–1802 (1998). CASPubMedPubMed Central Google Scholar
Henkel, J. R., Apodaca, G., Altschuler, Y., Hardy, S. & Weisz, O. A. Selective perfurbation of apical membrane traffic by expression of influenza M2, an acid-activated channel, in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell9, 2477–2490 (1998). CASPubMedPubMed Central Google Scholar
Hansen, G. H. et al. Transcytosis of immunglobulin A in the mouse enterocyte occurs through glycoplipid raft- and Rab17-containing compartments. Gastroenterol.116, 610–622 (1999). CAS Google Scholar
Hunziker, W., Whitney, J. A. & Mellman, I. Selective inhibition of transcytosis by Brefeldin A in MDCK cells. Cell57, 1–20 (1991). Google Scholar
Casanova, J. E., Breitfeld, P. P., Ross, S. A. & Mostov, K. E. Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science248, 742–745 (1990). CASPubMed Google Scholar
Singer, K. L. & Mostov, K. E. Dimerization of the polymeric immunoglobulin receptor controls its transcytotic trafficking. Mol. Biol. Cell9, 901–915 (1998). CASPubMedPubMed Central Google Scholar
Song, W., Bomsel, M., Casanova, J., Vaerman, J.-P. & Mostov, K. E. Stimulation of transcytosis of the polymeric immunoglobulin receptor by dimeric IgA. Proc. Natl Acad. Sci. USA91, 163–166 (1994). CASPubMedPubMed Central Google Scholar
Giffroy, D. et al. In vivo stimulation of polymeric Ig receptor transcytosis by circulating polymeric IgA in rat liver. Int. Immunol.10, 347–354 (1998).Together with reference 94, shows that dIgA stimulates pIgR transcytosis bothin vitroandin vivo. CASPubMed Google Scholar
Giffroy, D., Courtoy, P. J. & Vaerman, J. P. Polymeric IgA binding to the human pIgR elicits intracellular signalling, but fails to stimulate pIgR-transcytosis. Scand. J. Immunol.53, 56–64 (2001). CASPubMed Google Scholar
Luton, F. & Mostov, K. E. Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. Mol. Biol. Cell10, 1409–1427 (1999). CASPubMedPubMed Central Google Scholar
McCarthy, K. M. et al. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J. Cell Sci.114, 1591–1598 (2001). CASPubMed Google Scholar
Ellinger, I., Rothe, A., Grill, M. & Fuchs, R. Apical to basolateral transcytosis and apical recycling of immunoglobulin G in trophoblast-derived BeWo cells: effects of low temperature, nocodazole, and cychalasin D. Exp. Cell Res.269, 322–331 (2001). CASPubMed Google Scholar
Stefaner, I., Praetor, A. & Hunziker, W. Nonvectorial surface transport, endocytosis via a di-leucine-based motif, and bidirectional transcytosis of chimera encoding the cytosolic tail of rat FcRn expressed in Madin-Darby canine kidney cells. J. Biol. Chem274, 8998–9005 (1999). CASPubMed Google Scholar
Corthesy, B. & Spertini, F. Secretory immunoglobulin A: from mucosal protection to vaccine development. Biol. Chem.380, 1251–1262 (1999). CASPubMed Google Scholar
Corthésy, B. Recombinant immunoglobulin A: powerful tools for fundamental and applied research. Trends Biotech.20, 65–71 (2002). Google Scholar
Ferkol, T. et al. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J. Clin. Invest.95, 493–502 (1995). CASPubMedPubMed Central Google Scholar
Raghavan, M. & Bjorkman, P. J. Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol.12, 181–220 (1996). CASPubMed Google Scholar
Ma, J. K. et al. Generation and assembly of secretory antibodies in plants. Science268, 716–719 (1995). CASPubMed Google Scholar
Ma, J. K. et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nature Med.4, 601–606 (1998).Together with reference 105, shows that recombinant sIgA can be made in plants, and when orally administered, can decrease bacterial colonization. CASPubMed Google Scholar
Sheff, D. R., Kroschewski, R. & Mellman, I. Actin dependence of polarized receptor recycling in Madin-Darby canine kidney cell endosomes. Mol. Biol. Cell13, 262–275 (2002). CASPubMedPubMed Central Google Scholar
Gibson, A. et al. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J. Cell Biol.143, 81–94 (1998). CASPubMedPubMed Central Google Scholar