The enigmatic archaeal virosphere (original) (raw)
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA74, 5088–5090 (1977). ArticleCASPubMedPubMed Central Google Scholar
Lurie-Weinberger, M. N. & Gophna, U. Archaea in and on the human body: health implications and future directions. PLoS Pathog.11, e1004833 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lloyd, K. G., May, M. K., Kevorkian, R. T. & Steen, A. D. Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor. Appl. Environ. Microbiol.79, 7790–7799 (2013). ArticleCASPubMedPubMed Central Google Scholar
Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature409, 507–510 (2001). ArticleCASPubMed Google Scholar
Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol.67, 437–457 (2013). ArticleCASPubMed Google Scholar
Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature496, 215–218 (2013). ArticleCASPubMed Google Scholar
Takano, Y. et al. Sedimentary membrane lipids recycled by deep-sea benthic archaea. Nat. Geosci.3, 858–861 (2010). ArticleCAS Google Scholar
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature537, 689–693 (2016). This study suggests a global impact of archaeal viruses in the epipelagic and mesopelagic ocean. ArticleCASPubMed Google Scholar
Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv.2, e1600492 (2016). This study shows that archaeal viruses have a profound role in the functioning of deep-sea ecosystems and in global biogeochemical cycles. ArticleCASPubMedPubMed Central Google Scholar
Mochizuki, T. et al. Diversity of viruses of the hyperthermophilic archaeal genus Aeropyrum, and isolation of the Aeropyrum pernix bacilliform virus 1, APBV1, the first representative of the family Clavaviridae. Virology402, 347–354 (2010). ArticleCASPubMed Google Scholar
Häring, M., Rachel, R., Peng, X., Garrett, R. A. & Prangishvili, D. Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus. Acidianus bottle-shaped virus, from a new family, the Ampullaviridae. J. Virol.79, 9904–9911 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mochizuki, T. et al. Archaeal virus with exceptional virion architecture and the largest single-stranded DNA genome. Proc. Natl Acad. Sci. USA109, 13386–13391 (2012). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M., Quemin, E. R., Bamford, D. H., Forterre, P. & Prangishvili, D. Unification of the globally distributed spindle-shaped viruses of the Archaea. J. Virol.88, 2354–2358 (2014). ArticleCASPubMedPubMed Central Google Scholar
Redder, P. et al. Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environ. Microbiol.11, 2849–2862 (2009). ArticleCASPubMed Google Scholar
Häring, M. et al. Virology: independent virus development outside a host. Nature436, 1101–1102 (2005). ArticleCASPubMed Google Scholar
Hochstein, R. A., Amenabar, M. J., Munson-McGee, J. H., Boyd, E. S. & Young, M. J. Acidianus tailed spindle virus: a new archaeal large tailed spindle virus discovered by culture-independent methods. J. Virol.90, 3458–3468 (2016). A new spindle-shaped virus and its host are characterized using culture-independent techniques. ArticleCASPubMedPubMed Central Google Scholar
Xiang, X. et al. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J. Virol.79, 8677–8686 (2005). ArticleCASPubMedPubMed Central Google Scholar
Uldahl, K. B. et al. Life cycle characterization of Sulfolobus monocaudavirus 1, an extremophilic spindle-shaped virus with extracellular tail development. J. Virol.90, 5693–5699 (2016). ArticleCASPubMedPubMed Central Google Scholar
Erdmann, S. et al. A novel single-tailed fusiform Sulfolobus virus STSV2 infecting model Sulfolobus species. Extremophiles18, 51–60 (2014). ArticleCASPubMed Google Scholar
Erdmann, S., Le Moine Bauer, S. & Garrett, R. A. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus. Mol. Microbiol.91, 900–917 (2014). ArticleCASPubMed Google Scholar
Prangishvili, D. The wonderful world of archaeal viruses. Annu. Rev. Microbiol.67, 565–585 (2013). ArticleCASPubMed Google Scholar
Prangishvili, D. et al. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle. J. Mol. Biol.359, 1203–1216 (2006). ArticleCASPubMed Google Scholar
Arnold, H. P., Ziese, U. & Zillig, W. SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology272, 409–416 (2000). ArticleCASPubMed Google Scholar
Mochizuki, T., Sako, Y. & Prangishvili, D. Provirus induction in hyperthermophilic archaea: characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. J. Bacteriol.193, 5412–5419 (2011). ArticleCASPubMedPubMed Central Google Scholar
Iranzo, J., Koonin, E. V., Prangishvili, D. & Krupovic, M. Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements. J. Virol.90, 11043–11055 (2016). Comprehensive bipartite network analysis of all known archaeal virus genomes reveals evolutionary connections between different groups of viruses as well as non-viral mobile genetic elements. ArticleCASPubMedPubMed Central Google Scholar
Prangishvili, D. et al. A novel virus family, the Rudiviridae: Structure, virus-host interactions and genome variability of the sulfolobus viruses SIRV1 and SIRV2. Genetics152, 1387–1396 (1999). CASPubMedPubMed Central Google Scholar
Vestergaard, G. et al. A novel rudivirus, ARV1, of the hyperthermophilic archaeal genus Acidianus. Virology336, 83–92 (2005). ArticleCASPubMed Google Scholar
Vestergaard, G. et al. Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J. Bacteriol.190, 6837–6845 (2008). ArticleCASPubMedPubMed Central Google Scholar
Prangishvili, D., Koonin, E. V. & Krupovic, M. Genomics and biology of Rudiviruses, a model for the study of virus-host interactions in Archaea. Biochem. Soc. Trans.41, 443–450 (2013). ArticleCASPubMedPubMed Central Google Scholar
DiMaio, F. et al. A virus that infects a hyperthermophile encapsidates A-form DNA. Science348, 914–917 (2015). Near-atomic-resolution structure of the rod-shaped archaeal virus reveals the A-form of DNA in a biological entity and provides clues about the thermostability of the viral particle. ArticleCASPubMedPubMed Central Google Scholar
Goulet, A. et al. Acidianus filamentous virus 1 coat proteins display a helical fold spanning the filamentous archaeal viruses lineage. Proc. Natl Acad. Sci. USA106, 21155–21160 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pina, M., Bize, A., Forterre, P. & Prangishvili, D. The archeoviruses. FEMS Microbiol. Rev.35, 1035–1054 (2011). ArticleCASPubMed Google Scholar
Prangishvili, D. & Krupovic, M. A new proposed taxon for double-stranded DNA viruses, the order “Ligamenvirales”. Arch. Virol.157, 791–795 (2012). ArticleCASPubMed Google Scholar
Rensen, E. I. et al. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Proc. Natl Acad. Sci. USA113, 2478–2483 (2016). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. et al. A novel type of polyhedral viruses infecting hyperthermophilic archaea. J. Virol.91, e00589–e00517 (2017). CASPubMedPubMed Central Google Scholar
Pietilä, M. K., Roine, E., Sencilo, A., Bamford, D. H. & Oksanen, H. M. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes. Arch. Virol.161, 249–256 (2016). ArticleCASPubMed Google Scholar
Pietilä, M. K. et al. Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea. J. Virol.86, 5067–5079 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pietilä, M. K., Laurinavicius, S., Sund, J., Roine, E. & Bamford, D. H. The single-stranded DNA genome of novel archaeal virus Halorubrum pleomorphic virus 1 is enclosed in the envelope decorated with glycoprotein spikes. J. Virol.84, 788–798 (2010). ArticleCASPubMed Google Scholar
Pietilä, M. K., Roine, E., Paulin, L., Kalkkinen, N. & Bamford, D. H. An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol. Microbiol.72, 307–319 (2009). ArticleCASPubMed Google Scholar
Sencilo, A., Paulin, L., Kellner, S., Helm, M. & Roine, E. Related haloarchaeal pleomorphic viruses contain different genome types. Nucleic Acids Res.40, 5523–5534 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ackermann, H. W. & Prangishvili, D. Prokaryote viruses studied by electron microscopy. Arch. Virol.157, 1843–1849 (2012). ArticleCASPubMed Google Scholar
Pietilä, M. K., Demina, T. A., Atanasova, N. S., Oksanen, H. M. & Bamford, D. H. Archaeal viruses and bacteriophages: comparisons and contrasts. Trends Microbiol.22, 334–344 (2014). ArticleCASPubMed Google Scholar
Krupovic, M., Prangishvili, D., Hendrix, R. W. & Bamford, D. H. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev.75, 610–635 (2011). ArticlePubMedPubMed Central Google Scholar
Pietilä, M. K. et al. Structure of the archaeal head-tailed virus HSTV-1 completes the HK97 fold story. Proc. Natl Acad. Sci. USA110, 10604–10609 (2013). Cryo-EM reconstruction of the archaeal podovirus HSTV-1 capsid reveals a major capsid protein fold found in tailed bacteriophages and eukaryotic herpesviruses. ArticlePubMedPubMed Central Google Scholar
Pfister, P., Wasserfallen, A., Stettler, R. & Leisinger, T. Molecular analysis of Methanobacterium phage ψM2. Mol. Microbiol.30, 233–244 (1998). ArticleCASPubMed Google Scholar
Krupovic, M., Forterre, P. & Bamford, D. H. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J. Mol. Biol.397, 144–160 (2010). ArticleCASPubMed Google Scholar
Krupovic, M., Spang, A., Gribaldo, S., Forterre, P. & Schleper, C. A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Biochem. Soc. Trans.39, 82–88 (2011). ArticleCASPubMed Google Scholar
Pawlowski, A., Rissanen, I., Bamford, J. K., Krupovic, M. & Jalasvuori, M. Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch. Virol.159, 1541–1554 (2014). ArticleCASPubMed Google Scholar
Veesler, D. et al. Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography. Proc. Natl Acad. Sci. USA110, 5504–5509 (2013). Near-atomic-resolution structure of the turrivirus STIV reveals fine details of the virion organization and strengthens the evolutionary connection between STIV and bacterial and eukaryotic viruses with double jelly-roll capsid proteins. ArticleCASPubMedPubMed Central Google Scholar
Demina, T. A. et al. HCIV-1 and other tailless icosahedral internal membrane-containing viruses of the family Sphaerolipoviridae. Viruses9, 32 (2017). ArticleCASPubMed Central Google Scholar
Khayat, R. et al. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc. Natl Acad. Sci. USA102, 18944–18949 (2005). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M. & Bamford, D. H. Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr. Opin. Virol.1, 118–124 (2011). ArticleCASPubMed Google Scholar
Suhanovsky, M. M. & Teschke, C. M. Nature's favorite building block: deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 479–480, 487–497 (2015).
Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol.79, 14967–14970 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yu, X., Jih, J., Jiang, J. & Zhou, Z. H. Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science356, eaam6892 (2017). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M. & Koonin, E. V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl Acad. Sci. USA114, E2401–E2410 (2017). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M. & Bamford, D. H. Virus evolution: how far does the double beta-barrel viral lineage extend? Nat. Rev. Microbiol.6, 941–948 (2008). ArticleCASPubMed Google Scholar
Sinclair, R. M., Ravantti, J. J. & Bamford, D. H. Nucleic and amino acid sequences support structure-based viral classification. J. Virol.91, e02275-16 (2017). ArticlePubMedPubMed Central Google Scholar
Jäälinoja, H. T. et al. Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc. Natl Acad. Sci. USA105, 8008–8013 (2008). ArticlePubMedPubMed Central Google Scholar
Gil-Carton, D. et al. Insight into the assembly of viruses with vertical single β-barrel major capsid proteins. Structure23, 1866–1877 (2015). ArticleCASPubMed Google Scholar
Iranzo, J., Krupovic, M. & Koonin, E. V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio7, e00978-16 (2016). ArticlePubMedPubMed Central Google Scholar
Strömsten, N. J., Bamford, D. H. & Bamford, J. K. In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J. Mol. Biol.348, 617–629 (2005). ArticleCASPubMed Google Scholar
Kasson, P. et al. Model for a novel membrane envelope in a filamentous hyperthermophilic virus. eLife6, e26268 (2017). Near-atomic-resolution structure of an enveloped virion of archaeal virus AFV1 reveals novel membrane organization not previously observed in viruses or cellular organisms. ArticlePubMedPubMed Central Google Scholar
Valentine, D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol.5, 316–323 (2007). ArticleCASPubMed Google Scholar
Quemin, E. R. et al. Eukaryotic-like virus budding in Archaea. mBio7, e01439-16 (2016). This electron-tomography study shows that enveloped, spindle-shaped viruses of archaea are released from the cell by a budding mechanism highly reminiscent of that used by many enveloped eukaryotic viruses, such as HIV and influenza virus. ArticlePubMedPubMed Central Google Scholar
Quemin, E. R. et al. Sulfolobus spindle-shaped virus 1 contains glycosylated capsid proteins, a cellular chromatin protein, and host-derived lipids. J. Virol.89, 11681–11691 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kristensen, D. M., Saeed, U., Frishman, D. & Koonin, E. V. A census of α-helical membrane proteins in double-stranded DNA viruses infecting bacteria and archaea. BMC Bioinformatics16, 380 (2015). ArticlePubMedPubMed Central Google Scholar
Bath, C., Cukalac, T., Porter, K. & Dyall-Smith, M. L. His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology350, 228–239 (2006). ArticleCASPubMed Google Scholar
Martin, A. et al. SAV 1, a temperate u.v.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J.3, 2165–2168 (1984). ArticleCASPubMedPubMed Central Google Scholar
Hong, C. et al. Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proc. Natl Acad. Sci. USA112, 2449–2454 (2015). ArticleCASPubMedPubMed Central Google Scholar
Stedman, K. M., DeYoung, M., Saha, M., Sherman, M. B. & Morais, M. C. Structural insights into the architecture of the hyperthermophilic Fusellovirus SSV1. Virology474, 105–109 (2015). This work and the one in REF 76 present cryo-EM reconstructions of spindle-shaped archaeal viruses that are hyperthermophilic and hyperhalophilic, respectively. ArticleCASPubMed Google Scholar
Bettstetter, M., Peng, X., Garrett, R. A. & Prangishvili, D. AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus. Virology315, 68–79 (2003). ArticleCASPubMed Google Scholar
Deng, L. et al. Unveiling cell surface and type IV secretion proteins responsible for archaeal rudivirus entry. J. Virol.88, 10264–10268 (2014). ArticleCASPubMedPubMed Central Google Scholar
Klein, R., Rossler, N., Iro, M., Scholz, H. & Witte, A. Haloarchaeal myovirus φCh1 harbours a phase variation system for the production of protein variants with distinct cell surface adhesion specificities. Mol. Microbiol.83, 137–150 (2012). ArticleCASPubMed Google Scholar
Krupovic, M., Gribaldo, S., Bamford, D. H. & Forterre, P. The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements. Mol. Biol. Evol.27, 2716–2732 (2010). ArticleCASPubMed Google Scholar
Peng, X., Basta, T., Haring, M., Garrett, R. A. & Prangishvili, D. Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms. Virology364, 237–243 (2007). ArticleCASPubMed Google Scholar
Wang, Y. et al. Identification, characterization, and application of the replicon region of the halophilic temperate sphaerolipovirus SNJ1. J. Bacteriol.198, 1952–1964 (2016). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr. Opin. Virol.3, 578–586 (2013). ArticleCASPubMed Google Scholar
Chandler, M. et al. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat. Rev. Microbiol.11, 525–538 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pina, M. et al. Unique genome replication mechanism of the archaeal virus AFV1. Mol. Microbiol.92, 1313–1325 (2014). ArticleCASPubMed Google Scholar
Martinez-Alvarez, L., Deng, L. & Peng, X. Formation of a viral replication focus in Sulfolobus cells infected by the rudivirus Sulfolobus islandicus rod-shaped virus 2. J. Virol.91, e00486-17 (2017). This study shows that genome replication of the rod-shaped virus SIRV2 is confined to discrete foci in the cytoplasm, where the host DNA polymerase and viral replication factors are recruited. ArticlePubMedPubMed Central Google Scholar
Peeters, E. et al. DNA-interacting characteristics of the archaeal rudiviral protein SIRV2_Gp1. Viruses9, 190 (2017). ArticleCASPubMed Central Google Scholar
Gardner, A. F., Bell, S. D., White, M. F., Prangishvili, D. & Krupovic, M. Protein-protein interactions leading to recruitment of the host DNA sliding clamp by the hyperthermophilic Sulfolobus islandicus rod-shaped virus 2. J. Virol.88, 7105–7108 (2014). ArticleCASPubMedPubMed Central Google Scholar
Martinez-Alvarez, L., Bell, S. D. & Peng, X. Multiple consecutive initiation of replication producing novel brush-like intermediates at the termini of linear viral dsDNA genomes with hairpin ends. Nucleic Acids Res.44, 8799–8809 (2016). ArticleCASPubMedPubMed Central Google Scholar
Dellas, N. et al. Structure-based mutagenesis of Sulfolobus turreted icosahedral virus B204 reveals essential residues in the virion-associated DNA-packaging ATPase. J. Virol.90, 2729–2739 (2015). ArticleCASPubMed Google Scholar
Happonen, L. J. et al. The structure of the NTPase that powers DNA packaging into Sulfolobus turreted icosahedral virus 2. J. Virol.87, 8388–8398 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat. Rev. Mol. Cell Biol.11, 556–566 (2010). ArticleCASPubMedPubMed Central Google Scholar
Scourfield, E. J. & Martin-Serrano, J. Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem. Soc. Trans.45, 613–634 (2017). ArticleCASPubMed Google Scholar
Makarova, K. S., Yutin, N., Bell, S. D. & Koonin, E. V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat. Rev. Microbiol.8, 731–741 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. et al. Functional assignment of multiple ESCRT-III homologs in cell division and budding in Sulfolobus islandicus. Mol. Microbiol.105, 540–553 (2017). ArticleCASPubMed Google Scholar
Brumfield, S. K. et al. Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus Sulfolobus turreted icosahedral virus. J. Virol.83, 5964–5970 (2009). ArticleCASPubMedPubMed Central Google Scholar
Quax, T. E. F., Krupovic, M., Lucas, S., Forterre, P. & Prangishvili, D. The Sulfolobus rod-shaped virus 2 encodes a prominent structural component of the unique virion release system in Archaea. Virology404, 1–4 (2010). ArticleCASPubMed Google Scholar
Snyder, J. C., Brumfield, S. K., Peng, N., She, Q. & Young, M. J. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures. J. Virol.85, 6287–6292 (2011). ArticleCASPubMedPubMed Central Google Scholar
Daum, B. et al. Self-assembly of the general membrane-remodeling protein PVAP into sevenfold virus-associated pyramids. Proc. Natl Acad. Sci. USA111, 3829–3834 (2014). This study presents a three-dimensional reconstruction of the virus-associated pyramids employed by rod-shaped virus SIRV2 during the egress. ArticleCASPubMedPubMed Central Google Scholar
Bize, A. et al. Viruses in acidic geothermal environments of the Kamchatka Peninsula. Res. Microbiol.159, 358–366 (2008). ArticleCASPubMed Google Scholar
Rensen, E., Krupovic, M. & Prangishvili, D. Mysterious hexagonal pyramids on the surface of Pyrobaculum cells. Biochimie118, 365–367 (2015). ArticleCASPubMed Google Scholar
Luo, Y., Pfister, P., Leisinger, T. & Wasserfallen, A. Pseudomurein endoisopeptidases PeiW and PeiP, two moderately related members of a novel family of proteases produced in Methanothermobacter strains. FEMS Microbiol. Lett.208, 47–51 (2002). ArticleCASPubMed Google Scholar
Prangishvili, D., Garrett, R. A. & Koonin, E. V. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life. Virus Res.117, 52–67 (2006). ArticleCASPubMed Google Scholar
Greene, L. H. et al. The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res.35, D291–D297 (2007). ArticleCASPubMed Google Scholar
Krupovic, M., White, M. F., Forterre, P. & Prangishvili, D. Postcards from the edge: structural genomics of archaeal viruses. Adv. Virus Res.82, 33–62 (2012). ArticleCASPubMed Google Scholar
Iverson, E. A., Goodman, D. A., Gorchels, M. E. & Stedman, K. M. Extreme mutation tolerance: nearly half of the archaeal fusellovirus Sulfolobus spindle-shaped virus 1 genes are not required for virus function, including the minor capsid protein gene, vp3. J. Virol.91, e02406-16 (2017). ArticlePubMedPubMed Central Google Scholar
Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol.12, 36 (2014). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M., Béguin, P. & Koonin, E. V. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol.38, 36–43 (2017). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Garcia, P., Forterre, P., van der Oost, J. & Erauso, G. Plasmid pGS5 from the hyperthermophilic archaeon Archaeoglobus profundus is negatively supercoiled. J. Bacteriol.182, 4998–5000 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gorlas, A., Krupovic, M., Forterre, P. & Geslin, C. Living side by side with a virus: characterization of two novel plasmids from Thermococcus prieurii, a host for the spindle-shaped virus TPV1. Appl. Environ. Microbiol.79, 3822–3828 (2013). ArticleCASPubMedPubMed Central Google Scholar
Geslin, C. et al. Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J. Bacteriol.189, 4510–4519 (2007). ArticleCASPubMedPubMed Central Google Scholar
Krupovic, M., Gonnet, M., Hania, W. B., Forterre, P. & Erauso, G. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids. PLoS ONE8, e49044 (2013). ArticleCASPubMedPubMed Central Google Scholar
Goulet, A. et al. Getting the best out of long-wavelength X-rays: de novo chlorine/sulfur SAD phasing of a structural protein from ATV. Acta Crystallogr. D Biol. Crystallogr.66, 304–308 (2010). ArticleCASPubMed Google Scholar
Krupovic, M., Cvirkaite-Krupovic, V., Prangishvili, D. & Koonin, E. V. Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease. Biol. Direct10, 65 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bidgood, S. R. & Mercer, J. Cloak and dagger: alternative immune evasion and modulation strategies of poxviruses. Viruses7, 4800–4825 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ressing, M. E. et al. Immune evasion by Epstein-Barr virus. Curr. Top. Microbiol. Immunol.391, 355–381 (2015). CASPubMed Google Scholar
Zhao, J. H., Hua, C. L., Fang, Y. Y. & Guo, H. S. The dual edge of RNA silencing suppressors in the virus-host interactions. Curr. Opin. Virol.17, 39–44 (2016). ArticleCASPubMed Google Scholar
Chowdhury, S. et al. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell169, 47–57.e11 (2017). ArticleCASPubMedPubMed Central Google Scholar
Pawluk, A. et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol.1, 16085 (2016). ArticleCASPubMed Google Scholar
Sontheimer, E. J. & Davidson, A. R. Inhibition of CRISPR-Cas systems by mobile genetic elements. Curr. Opin. Microbiol.37, 120–127 (2017). ArticleCASPubMedPubMed Central Google Scholar
Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J. Bacteriol.195, 3834–3844 (2013). ArticleCASPubMedPubMed Central Google Scholar
Weinberger, A. D., Wolf, Y. I., Lobkovsky, A. E., Gilmore, M. S. & Koonin, E. V. Viral diversity threshold for adaptive immunity in prokaryotes. mBio3, e00456-12 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from the species-specific mobilome. mBio8, e01397-17 (2017). ArticlePubMedPubMed Central Google Scholar
Fineran, P. C. et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl Acad. Sci. USA111, E1629–E1638 (2014). ArticleCASPubMedPubMed Central Google Scholar
Manica, A., Zebec, Z., Steinkellner, J. & Schleper, C. Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus. Nucleic Acids Res.41, 10509–10517 (2013). ArticleCASPubMedPubMed Central Google Scholar
Maniv, I., Jiang, W., Bikard, D. & Marraffini, L. A. Impact of different target sequences on type III CRISPR-Cas immunity. J. Bacteriol.198, 941–950 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mousaei, M., Deng, L., She, Q. & Garrett, R. A. Major and minor crRNA annealing sites facilitate low stringency DNA protospacer binding prior to type I-A CRISPR-Cas interference in Sulfolobus. RNA Biol.13, 1166–1173 (2016). ArticlePubMedPubMed Central Google Scholar
Held, N. L. & Whitaker, R. J. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ. Microbiol.11, 457–466 (2009). ArticleCASPubMed Google Scholar
Emerson, J. B. et al. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea2013, 370871 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gudbergsdóttir, S. R., Menzel, P., Krogh, A., Young, M. & Peng, X. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ. Microbiol.18, 863–874 (2016). The study describes several novel hyperthermophilic archaeal virus genomes assembled from metagenomic data. ArticleCASPubMed Google Scholar
Adriaenssens, E. M., van Zyl, L. J., Cowan, D. A. & Trindade, M. I. Metaviromics of Namib Desert salt pans: a novel lineage of haloarchaeal salterproviruses and a rich source of ssDNA viruses. Viruses8, 14 (2016). ArticleCASPubMed Central Google Scholar
Nishimura, Y. et al. Environmental viral genomes shed new light on virus-host interactions in the ocean. mSphere2, e00359-16 (2017). ArticlePubMedPubMed Central Google Scholar
Philosof, A. et al. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota identified by genome-centric metagenomics. Curr. Biol.27, 1362–1368 (2017). This study, along with REF 144, describes the identification of a novel, diverse group of archaeal viruses, called Magroviruses, associated with environmentally abundant, uncultured Marine Group II Euryarchaeota. ArticleCASPubMedPubMed Central Google Scholar
Servin-Garciduenas, L. E., Peng, X., Garrett, R. A. & Martinez-Romero, E. Genome sequence of a novel archaeal rudivirus recovered from a mexican hot spring. Genome Announc.1, e00040-12 (2013). ArticlePubMedPubMed Central Google Scholar
Servin-Garciduenas, L. E., Peng, X., Garrett, R. A. & Martinez-Romero, E. Genome sequence of a novel archaeal fusellovirus assembled from the metagenome of a mexican hot spring. Genome Announc1, e00164-13 (2013). ArticlePubMedPubMed Central Google Scholar
Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE7, e33802 (2012). ArticleCASPubMedPubMed Central Google Scholar
Santos, F. et al. Metagenomic approach to the study of halophages: the environmental halophage 1. Environ. Microbiol.9, 1711–1723 (2007). ArticleCASPubMed Google Scholar
Martinez-Garcia, M., Santos, F., Moreno-Paz, M., Parro, V. & Anton, J. Unveiling viral-host interactions within the 'microbial dark matter'. Nat. Commun.5, 4542 (2014). ArticleCASPubMed Google Scholar
Garrett, R. A. et al. Metagenomic analyses of novel viruses and plasmids from a cultured environmental sample of hyperthermophilic neutrophiles. Environ. Microbiol.12, 2918–2930 (2010). ArticleCASPubMed Google Scholar
Bolduc, B. et al. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J. Virol.86, 5562–5573 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kazlauskas, D., Krupovic, M. & Venclovas, C. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes. Nucleic Acids Res.44, 4551–4564 (2016). ArticleCASPubMedPubMed Central Google Scholar
Chow, C. E., Winget, D. M., White, R. A., 3rd, Hallam, S. J. & Suttle, C. A. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front. Microbiol.6, 265 (2015). PubMedPubMed Central Google Scholar
Labonte, J. M. et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J.9, 2386–2399 (2015). ArticleCASPubMedPubMed Central Google Scholar
Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature542, 237–241 (2017). ArticleCASPubMed Google Scholar
Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun.6, 6585 (2015). ArticleCASPubMed Google Scholar
Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol.15, 161–168 (2017). ArticleCASPubMed Google Scholar
Häring, M. et al. Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae. Virology323, 233–242 (2004). ArticleCASPubMed Google Scholar
Stedman, K. in The Springer Index of Viruses ( eds Tidona, C. & Darai, G. ) 561–566 (Springer-Verlag, 2011).
Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc. Natl Acad. Sci. USA89, 7645–7649 (1992). ArticleCASPubMedPubMed Central Google Scholar
Porter, K. et al. SH1: A novel, spherical halovirus isolated from an Australian hypersaline lake. Virology335, 22–33 (2005). ArticleCASPubMed Google Scholar
Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl Acad. Sci. USA101, 7716–7720 (2004). ArticleCASPubMedPubMed Central Google Scholar