The co-evolution of host cationic antimicrobial peptides and microbial resistance (original) (raw)
Woolhouse, M. E., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genet.32, 569–577 (2002). CASPubMed Google Scholar
Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science303, 327–332 (2004). CASPubMed Google Scholar
Brubaker, R. R. The recent emergence of plague: a process of felonious evolution. Microb. Ecol.47, 293–299 (2004). CASPubMed Google Scholar
Waldvogel, F. A. Infectious diseases in the 21st century: old challenges and new opportunities. Int. J. Infect. Dis.8, 5–12 (2004). PubMed Google Scholar
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature415, 389–395 (2002). This is a comprehensive review on the diversity, structure, activity and possible applications of endogenous antimicrobial peptides from higher organisms. CASPubMed Google Scholar
Hancock, R. E. W. & Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol.8, 402–410 (2000). CASPubMed Google Scholar
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol.3, 710–720 (2003). CAS Google Scholar
Lehrer, R. I. Primate defensins. Nature Rev. Microbiol.2, 727–738 (2004). CAS Google Scholar
Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol.3, 238–250 (2005). CAS Google Scholar
Selsted, M. E. & Ouellette, A. J. Mammalian defensins in the antimicrobial immune response. Nature Immunol.6, 551–557 (2005). CAS Google Scholar
Dorschner, R. A. et al. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J.20, 35–42 (2006). CASPubMed Google Scholar
Sahl, H. G. et al. Mammalian defensins: structures and mechanism of antibiotic activity. J. Leukoc. Biol.77, 466–475 (2005). This article compares the antibacterial and membrane-disrupting properties of mammalian defensins. CASPubMed Google Scholar
Yang, D., Biragyn, A., Kwak, L. W. & Oppenheim, J. J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol.23, 291–296 (2002). CASPubMed Google Scholar
Bals, R. & Wilson, J. M. Cathelicidins — a family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci.60, 711–720 (2003). CASPubMed Google Scholar
Bowdish, D. M. et al. Impact of LL-37 on anti-infective immunity. J. Leukoc. Biol.77, 451–459 (2005). CASPubMed Google Scholar
Dürr, M. & Peschel, A. Chemokines meet defensins — the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect. Immun.70, 6515–6517 (2002). PubMedPubMed Central Google Scholar
Rosenfeld, Y., Papo, N. & Shai, Y. Endotoxin (LPS) neutralization by innate immunity host-defense peptides: peptides' properties and plausible modes of action. J. Biol. Chem.281, 1636–1643 (2006). CASPubMed Google Scholar
Vallender, E. J. & Lahn, B. T. Positive selection on the human genome. Hum. Mol. Genet.13,R245–R254 (2004).
Patil, A., Hughes, A. L. & Zhang, G. Rapid evolution and diversification of mammalian α-defensins as revealed by comparative analysis of rodent and primate genes. Physiol. Genomics20, 1–11 (2004). CASPubMed Google Scholar
Nusbaum, C. et al. DNA sequence and analysis of human chromosome 8. Nature439, 331–335 (2006). CASPubMed Google Scholar
Crovella, S. et al. Primate β-defensins — structure, function and evolution. Curr. Protein Pept. Sci.6, 7–21 (2005). This article describes the diversity of defensin structures in primate species. CASPubMed Google Scholar
Nizet, V. in Antimicrobial Peptides in Human Health and Disease (ed. Gallo, R. L.) 277–304 (Horizon Bioscience, Norfolk, 2005). Google Scholar
Peschel, A. How do bacteria resist human antimicrobial peptides? Trends Microbiol.10, 179–186 (2002). CASPubMed Google Scholar
Kraus, D. & Peschel, A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr. Top. Microbiol. Immunol.306, 231–250 (2006). CASPubMed Google Scholar
Kristian, S. A. et al. Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J. Infect. Dis.188, 414–423 (2003). CASPubMed Google Scholar
Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature414, 454–457 (2001). This article demonstrates the important role of CAMPs in host defence using transgenic mice lacking the murine homologue of LL-37. CASPubMed Google Scholar
Gunn, J. S., Ryan, S. S., Van Velkinburgh, J. C., Ernst, R. K. & Miller, S. I. Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect. Immun.68, 6139–6146 (2000). CASPubMedPubMed Central Google Scholar
Weidenmaier, C. et al. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect. Immun.73, 8033–8038 (2005). CASPubMedPubMed Central Google Scholar
Kramer, N. E., van Hijum, S. A. F. T., Knol, J., Kok, J. & Kuipers, O. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob. Agents Chemother.50, 1753–1761 (2006). CASPubMedPubMed Central Google Scholar
Perron, G. G., Zasloff, M. & Bell, G. Experimental evolution of resistance to an antimicrobial peptide. Proc. Biol. Sci.273, 251–256 (2006). This article demonstrates that bacteria can become spontaneously resistant to endogenous antimicrobial peptides onin vitroexposure to slowly increasing peptide concentrations. CASPubMed Google Scholar
Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med.10, S122–S129 (2004). CASPubMed Google Scholar
Chambers, H. F. Community-associated MRSA — resistance and virulence converge. N. Engl. J. Med.352, 1485–1487 (2005). CASPubMed Google Scholar
Andres, E. & Dimarcq, J. L. Cationic antimicrobial peptides: update of clinical development. J. Intern. Med.255, 519–520 (2004). CASPubMed Google Scholar
Mygind, P. H. et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature437, 975–980 (2005). CASPubMed Google Scholar
Sieprawska-Lupa, M. et al. Degradation of human antimicrobial peptide LL-37 by _Staphylococcus aureus_-derived proteinases. Antimicrob. Agents Chemother.48, 4673–4679 (2004). CASPubMedPubMed Central Google Scholar
Guina, T., Yi, E. C., Wang, H., Hackett, M. & Miller, S. I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar Typhimurium promotes resistance to α-helical antimicrobial peptides. J. Bacteriol.182, 4077–4086 (2000). CASPubMedPubMed Central Google Scholar
Nyberg, P., Rasmussen, M. & Bjorck, L. α2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J. Biol. Chem.279, 52820–52823 (2004). CASPubMed Google Scholar
Schmidtchen, A., Frick, I. M., Andersson, E., Tapper, H. & Bjorck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol.46, 157–168 (2002). CASPubMed Google Scholar
Wu, Z. et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl Acad. Sci. USA100, 8880–8885 (2003). This article analyses different structural requirements for antimicrobial or chemotactic activity of CAMPs. CASPubMedPubMed Central Google Scholar
Maemoto, A. et al. Functional analysis of the α-defensin disulfide array in mouse cryptdin-4. J. Biol. Chem.279, 44188–44196 (2004). CASPubMed Google Scholar
Campopiano, D. J. et al. Structure–activity relationships in defensin dimers: a novel link between β-defensin tertiary structure and antimicrobial activity. J. Biol. Chem.279, 48671–48679 (2004). CASPubMed Google Scholar
Rozek, A., Powers, J. P., Friedrich, C. L. & Hancock, R. E. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry42, 14130–14138 (2003). CASPubMed Google Scholar
Harwig, S. S. et al. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur. J. Biochem.240, 352–357 (1996). CASPubMed Google Scholar
Hornef, M. W., Putsep, K., Karlsson, J., Refai, E. & Andersson, M. Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nature Immunol.5, 836–843 (2004). This article describes how the formation of heterodimers by murine CRS peptides leads to multiple antimicrobial molecules with different activity spectra. CAS Google Scholar
Tang, Y. Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science286, 498–502 (1999). CASPubMed Google Scholar
Jack, R. W., Bierbaum, G. & Sahl, H.-G. Lantibiotics and Related Peptides (Springer, Berlin, 1998). Google Scholar
Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nature Rev. Microbiol.3, 777–788 (2005). CAS Google Scholar
Tjabringa, G. S. et al. Host defense effector molecules in mucosal secretions. FEMS Immunol. Med. Microbiol.45, 151–158 (2005). CASPubMed Google Scholar
Jin, T. et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol.172, 1169–1176 (2004). CASPubMed Google Scholar
Frick, I. M., Akesson, P., Rasmussen, M., Schmidtchen, A. & Bjorck, L. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem.278, 16561–16566 (2003). CASPubMed Google Scholar
Shafer, W. M., Qu, X.-D., Waring, A. J. & Lehrer, R. I. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl Acad. Sci. USA95, 1829–1833 (1998). This article describes the first multiple drug resistance protein involved in CAMP resistance. CASPubMedPubMed Central Google Scholar
Tzeng, Y. L. et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J. Bacteriol.187, 5387–5396 (2005). CASPubMedPubMed Central Google Scholar
Fernie-King, B. A., Seilly, D. J. & Lachmann, P. J. The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human β-defensins. Immunology111, 444–452 (2004). CASPubMedPubMed Central Google Scholar
Douglas, S. E., Gallant, J. W., Liebscher, R. S., Dacanay, A. & Tsoi, S. C. Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev. Comp. Immunol.27, 589–601 (2003). CASPubMed Google Scholar
Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem.276, 7806–7810 (2001). CASPubMed Google Scholar
Ouellette, A. J. & Selsted, M. E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J.10, 1280–1289 (1996). CASPubMed Google Scholar
Eckmann, L. Defence molecules in intestinal innate immunity against bacterial infections. Curr. Opin. Gastroenterol.21, 147–151 (2005). CASPubMed Google Scholar
Taudien, S. et al. Polymorphic segmental duplications at 8p23.1 challenge the determination of individual defensin gene repertoires and the assembly of a contiguous human reference sequence. BMC Genomics5, 92 (2004). PubMedPubMed Central Google Scholar
Ernst, R. K., Guina, T. & Miller, S. I. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect.3, 1327–1334 (2001). CASPubMed Google Scholar
Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol. Mol. Biol. Rev.67, 686–723 (2003). CASPubMedPubMed Central Google Scholar
Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J. Biol. Chem.274, 8405–8410 (1999). This article describes CAMP resistance by alterations of the Gram-positive cell envelope, paralleling lipid A modifications in Gram-negative bacteria. CASPubMed Google Scholar
Abachin, E. et al. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol.43, 1–14 (2002). CASPubMed Google Scholar
Poyart, C. et al. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol. Microbiol.49, 1615–1625 (2003). CASPubMed Google Scholar
Kristian, S. A. et al. D-alanylation of teichoic acid promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J. Bacteriol.187, 6719–6725 (2005). CASPubMedPubMed Central Google Scholar
Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med.193, 1067–1076 (2001). CASPubMedPubMed Central Google Scholar
Weidenmaier, C., Kristian, S. A. & Peschel, A. Bacterial resistance to antimicrobial host defenses — an emerging target for novel antiinfective strategies? Curr. Drug Targets4, 643–649 (2003). CASPubMed Google Scholar
Miller, S. I., Ernst, R. K. & Bader, M. W. LPS, TLR4 and infectious disease diversity. Nature Rev. Microbiol.3, 36–46 (2005). CAS Google Scholar
Koprivnjak, T., Peschel, A., Gelb, M. H., Liang, N. S. & Weiss, J. P. Role of charge properties of bacterial envelope in bactericidal action of human Group IIA phospholipase A2 against Staphylococcus aureus. J. Biol. Chem.277, 47636–47644 (2002). CASPubMed Google Scholar
Collins, L. V. et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis.186, 214–219 (2002). CASPubMed Google Scholar
Midorikawa, K. et al. Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infect. Immun.71, 3730–3739 (2003). CASPubMedPubMed Central Google Scholar
Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nature Med.10, 243–245 (2004). CASPubMed Google Scholar
Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem.276, 5707–5713 (2001). CASPubMed Google Scholar
Shafer, W. M., Casey, S. G. & Spitznagel, J. K. Lipid A and resistance of Salmonella typhimurium to antimicrobial granule proteins of human neutrophil granulocytes. Infect. Immun.43, 834–838 (1984). CASPubMedPubMed Central Google Scholar
Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell95, 189–198 (1998). CASPubMed Google Scholar
Vuong, C. et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol.6, 269–275 (2004). CASPubMed Google Scholar
Otto, M. Bacterial evasion of antimicrobial peptides by biofilm formation. Curr. Top. Microbiol. Immunol.306, 251–258 (2006). CASPubMed Google Scholar
Ginsburg, I. The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae. APMIS110, 753–770 (2002). PubMed Google Scholar
Breukink, E. et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science286, 2361–2364 (1999). CASPubMed Google Scholar
Wiedemann, I. et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem.276, 1772–1779 (2001). This article demonstrates the combination of several antimicrobial mechanisms in the antimicrobial peptide nisin. CASPubMed Google Scholar
Bierbaum, G. & Sahl, H. G. Induction of autolysis of staphylococci by the basic peptide antibiotic pep5 and nisin and their influence on the activity of autolytic enzymes. Arch. Microbiol.141, 249–254 (1985). CASPubMed Google Scholar
Pag, U. & Sahl, H. G. Multiple activities in lantibiotics — models for the design of novel antibiotics? Curr. Pharm. Des.8, 815–833 (2002). CASPubMed Google Scholar
Gravesen, A., Jydegaard Axelsen, A. M., Mendes, d. S., Hansen, T. B. & Knochel, S. Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl. Environ. Microbiol.68, 756–764 (2002). CASPubMedPubMed Central Google Scholar
Ganz, T. Hepcidin in iron metabolism. Curr. Opin. Hematol.11, 251–254 (2004). CASPubMed Google Scholar
Nguyen, T. X., Cole, A. M. & Lehrer, R. I. Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides24, 1647–1654 (2003). CASPubMed Google Scholar
Fowler, V. G. Jr et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis.190, 1140–1149 (2004). CASPubMed Google Scholar
Fowler, V. G. Jr et al. In vitro resistance to thrombin-induced platelet microbicidal protein in isolates of Staphylococcus aureus from endocarditis patients correlates with an intravascular device source. J. Infect. Dis.182, 1251–1254 (2000). CASPubMed Google Scholar
Arthur, M., Reynolds, P. & Courvalin, P. Glycopeptide resistance in enterococci. Trends Microbiol.4, 401–407 (1996). CASPubMed Google Scholar
Allen, N. E. & Nicas, T. I. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol. Rev.26, 511–532 (2003). CASPubMed Google Scholar
Zhang, H. Z., Hackbarth, C. J., Chansky, K. M. & Chambers, H. F. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science291, 1962–1965 (2001). CASPubMed Google Scholar
Bader, M. W. et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122, 461–472 (2005). This article characterizes the first bacterial CAMP-sensing regulation system. CASPubMed Google Scholar
Jacoby, G. A. & Munoz-Price, L. S. The new β-lactamases. N. Engl. J. Med.352, 380–391 (2005). CASPubMed Google Scholar
Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect. Dis.1, 147–155 (2001). CASPubMed Google Scholar
van Veen, H. W. & Konings, W. N. Drug efflux proteins in multidrug resistant bacteria. Biol. Chem.378, 769–777 (1997). CASPubMed Google Scholar
Fux, C. A., Costerton, J. W., Stewart, P. S. & Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol.13, 34–40 (2005). CASPubMed Google Scholar