Redefining viruses: lessons from Mimivirus (original) (raw)

References

  1. Pace, N. R. Time for a change. Nature 441, 289 (2006).
    Article CAS Google Scholar
  2. Bergh, D., Borsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses in aquatic environments. Nature 340, 467–468 (1989).
    Article CAS Google Scholar
  3. Edwards, R. A. & Rohwer, F. Viral metagenomics. Nature Rev. Microbiol. 3, 504–510 (2005).
    Article CAS Google Scholar
  4. Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5–16 (2006).
    Article CAS Google Scholar
  5. Villarreal, L. P. Viruses and the Evolution of Life 1–426 (ASM, Washington, 2005).
    Book Google Scholar
  6. Prudhomme, S., Bonnaud, B. & Mallet, F. Endogenous retroviruses and animal reproduction. Cytogenet. Genome Res. 110, 353–364 (2005).
    Article CAS Google Scholar
  7. Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl Acad. Sci USA 103, 3669–3674 (2006).
    Article CAS Google Scholar
  8. Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view. Nature Rev. Microbiol. 4, 837–848 (2006).
    Article CAS Google Scholar
  9. Blanc, G. et al. Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 3, e14 (2007).
    Article Google Scholar
  10. La Scola, B. et al. A giant virus in amoebae. Science 299, 2033 (2003).
    Article CAS Google Scholar
  11. Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344–1350 (2004).
    Article CAS Google Scholar
  12. Suzan-Monti, M., Scola, B. L., Barrassi, L., Espinosa, L. & Raoult, D. Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga Mimivirus. PLoS ONE 2, e328 (2007).
    Article Google Scholar
  13. Raoult, D., La Scola, B. & Birtles, R. The discovery and characterization of Mimivirus, the largest known virus and putative pneumonia agent. Clin. Infect. Dis. 45, 95–102 (2007).
    Article CAS Google Scholar
  14. Popper, K. The Logic of Scientific Discovery 1–544 (Taylor & Francis Group, London, 2002).
    Google Scholar
  15. Pasteur, L. La théorie des germes et ses applications en médecine et en chirurgie. C. R. Acad. Sci. 86, 1037–1043 (1878).
    Google Scholar
  16. Fuerst, J. A. Intracellular compartmentation in planctomycetes. Annu. Rev. Microbiol. 59, 299–328 (2005).
    Article CAS Google Scholar
  17. Woese, C. R. There must be a prokaryote somewhere: microbiology's search for itself. Microbiol. Rev. 58, 1–9 (1994).
    CAS PubMed PubMed Central Google Scholar
  18. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
    Article CAS Google Scholar
  19. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee on Taxonomy of Viruses 1–1259 (Academic, San Diego, 2005).
    Google Scholar
  20. Dodds, J. A. Satellite tobacco mosaic virus. Curr. Top. Microbiol. Immunol. 239, 145–157 (1999).
    CAS PubMed Google Scholar
  21. Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).
    Article CAS Google Scholar
  22. Lwoff, A. The concept of virus. J. Gen. Microbiol. 17, 239–253 (1957).
    CAS PubMed Google Scholar
  23. Raoult, D. The journey from Rickettsia to Mimivirus. ASM News 71, 278–284 (2005).
    Google Scholar
  24. Burnet, M. General discussion of virus nomenclature. Ann. NY Acad. Sci. 56, 627–630 (1953).
    Google Scholar
  25. Burnet, M. Virus classification and nomenclature. Ann. NY Acad. Sci. 56, 383–390 (1953).
    Article CAS Google Scholar
  26. Stanley, W. M. Virus as a chemical agent. Rev. Med. (Mex.) 32, 209–212 (1952).
    CAS Google Scholar
  27. Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).
    Article CAS Google Scholar
  28. Koonin, E. V. & Martin, W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 21, 647–654 (2005).
    Article CAS Google Scholar
  29. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct 19, 1–29 (2006).
    Article Google Scholar
  30. Koonin, E. V. Virology: Gulliver among the Lilliputians. Curr. Biol. 15, R167–R169 (2005).
    Article CAS Google Scholar
  31. Audic, S. et al. Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet. 3, e138 (2007).
    Article Google Scholar
  32. Engels, F. Dialectics of Nature 1–410 (Wellred Publications, London, 2006).
    Google Scholar
  33. Novoa, R. R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97, 147–172 (2005).
    Article CAS Google Scholar
  34. Claverie, J. M. Virus takes center stage in cellular evolution. Genome Biol. 7, 1–10 (2006).
    Article Google Scholar
  35. Smith, H. O., Hutchison, C. A., Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).
    Article CAS Google Scholar
  36. Nakabachi, A. et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314, 267 (2006).
    Article CAS Google Scholar
  37. Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev. Microbiol. 1, 127–136 (2003).
    Article CAS Google Scholar
  38. Iyer, L. M., Aravind, L. & Koonin, E. V. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75, 11720–11734 (2001).
    Article CAS Google Scholar
  39. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).
    Article CAS Google Scholar
  40. Bamford, D. H., Grimes, J. M. & Stuart, D. I. What does structure tell us about virus evolution? Curr. Opin. Struct. Biol. 15, 655–663 (2005).
    Article CAS Google Scholar
  41. Nandhagopal, N. et al. The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc. Natl Acad. Sci. USA 99, 14758–14763 (2002).
    Article CAS Google Scholar
  42. Rice, G. et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc. Natl Acad. Sci. USA 101, 7716–7720 (2004).
    Article CAS Google Scholar
  43. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).
    Article CAS Google Scholar
  44. Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J. Virol. 79, 14967–14970 (2005).
    Article CAS Google Scholar

Download references