Methanogenic archaea: ecologically relevant differences in energy conservation (original) (raw)
Boone, D. R., Whitman, W. B. & Rouvière, P. in Methanogenesis (ed. Ferry, J. G.) 35–80 (Chapman & Hall, New York & London, 1993). Book Google Scholar
Garcia, J. L., Patel, B. K. C. & Ollivier, B. Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe6, 205–226 (2000). ArticleCASPubMed Google Scholar
Ferry, J. G. & Kastead, K. A. in Archaea: Molecular and Cellular Biology (ed. Cavicchioli, R.) 288–314 (ASM, Washington DC, 2007). Book Google Scholar
Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology144, 2377–2406 (1998). ArticleCASPubMed Google Scholar
Grahame, D. A. & Gencic, S. in Encyclopedia of Microbiology (ed. Lederberg, J.) 188–198 (Academic, New York, 2000). Google Scholar
McInerney, M. J. et al. The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc. Natl Acad. Sci. USA104, 7600–7605 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schink, B. in Molecular Basis of Symbiosis (ed. Overman, J.) 1–19 (Springer, Berlin, 2006). Book Google Scholar
Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev.41, 100–180 (1977). CASPubMedPubMed Central Google Scholar
Conrad, M. E., Templeton, A. S., Daley, P. F. & Alvarez-Cohen, L. Seasonally-induced fluctuations in microbial production and consumption of methane during bioremediation of aged subsurface refinery contamination. Environ. Sci. Technol.33, 4061–4068 (1999). ArticleCAS Google Scholar
Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta62, 1745–1756 (1998). ArticleCAS Google Scholar
Kotsyurbenko, O. R., Glagolev, M. V., Nozhevnikova, A. N. & Conrad, R. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol. Ecol.38, 153–159 (2001). ArticleCAS Google Scholar
Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol. Rev.25, 175–243 (2001). ArticleCASPubMed Google Scholar
Zinder, S. H. in Methanogenesis (ed. Ferry, J. G.) 128–206 (Chapman & Hall, New York & London, 1993). Book Google Scholar
Kamra, D. N. Rumen microbial ecosystem. Curr. Sci.89, 124–135 (2005). CAS Google Scholar
Pester, M. & Brune, A. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME J.1, 551–565 (2007). ArticleCASPubMed Google Scholar
Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature440, 918–921 (2006). ArticleCASPubMed Google Scholar
Hallam, S. J., Girguis, P. R., Preston, C. M., Richardson, P. M. & DeLong, E. F. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl. Environ. Microbiol.69, 5483–5491 (2003). ArticleCASPubMedPubMed Central Google Scholar
Krüger, M. et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature426, 878–881 (2003). Describes the purification and characterization of methyl-coenzyme M reductase from microbial mats that catalyses the anaerobic oxidation of methane. ArticleCASPubMed Google Scholar
Shima, S. & Thauer, R. K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic archaea. Curr. Opin. Microbiol.8, 643–648 (2005). ArticleCASPubMed Google Scholar
Shima, S. & Thauer, R. K. Anaerobic methane oxidation by archaea: a biochemical approach. Biosci. Ind.64, 23–26 (2006). CAS Google Scholar
Thauer, R. K. & Shima, S. in Archaea: Evolution, Physiology and Molecular Biology (eds. Garrett, R. & Klenk, H.-P.) 275–283 (Blackwell Publishing, Malden, Massachusetts, 2007). Google Scholar
Thauer, R. K. & Shima, S. Methane as fuel for anaerobic microorganisms. Ann. NY Acad. Sci.1125, 158–170 (2008). ArticleCASPubMed Google Scholar
Herrmann, G., Jayamani, E., Mai, G. & Buckel, W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol.190, 784–791 (2008). A mini-review in which the hypothesis of flavin-based electron bifurcation was first formulated. ArticleCASPubMed Google Scholar
Li, F. et al. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol.190, 843–850 (2008). Showed that the cytoplasmic Bcd–EtfAB complex fromC. kluyvericouples the endergonic reduction of ferredoxin with NADH to the exergonic reduction of crotonyl-CoA with NADH. ArticleCASPubMed Google Scholar
Seedorf, H. et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc. Natl Acad. Sci. USA105, 2128–2133 (2008). Identified the genes which encode the proteins that are involved in ethanol acetate fermentation, including those that catalyse H2formation from NADH. ArticleCASPubMedPubMed Central Google Scholar
Jussofie, A. & Gottschalk, G. Further studies on the distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett.37, 15–18 (1986). ArticleCAS Google Scholar
Kühn, W. et al. Distribution of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett.20, 407–410 (1983). Article Google Scholar
Kühn, W., Fiebig, K., Walther, R. & Gottschalk, G. Presence of a cytochrome _b_559 in Methanosarcina barkeri. FEBS Lett.105, 271–274 (1979). First report of a cytochrome in a methanogenic archaeon. ArticlePubMed Google Scholar
Kühn, W. & Gottschalk, G. Characterization of the cytochromes occurring in Methanosarcina species. Eur. J. Biochem.135, 89–94 (1983). ArticlePubMed Google Scholar
Abken, H. J. et al. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J. Bacteriol.180, 2027–2032 (1998). Reported the discovery of methanophenazine in methanogens with cytochromes. CASPubMedPubMed Central Google Scholar
Beifuss, U., Tietze, M., Bäumer, S. & Deppenmeier, U. Methanophenazine: structure, total synthesis, and function of a new cofactor from methanogenic archaea. Angewandte Chemie-International Edition39, 2470–2472 (2000). ArticleCASPubMed Google Scholar
Tietze, M. et al. Redox potentials of methanophenazine and CoB-S-S-CoM, factors involved in electron transport in methanogenic archaea. Chembiochem4, 333–335 (2003). ArticleCASPubMed Google Scholar
Kendall, M. M. & Boone, D. R. in The Prokaryotes (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 244–256 (Springer, New York, 2006). Book Google Scholar
Bonin, A. S. & Boone, D. R. in The Prokaryotes (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.) 231–243 (Springer, New York, 2006). Book Google Scholar
Fricke, W. F. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol.188, 642–658 (2006). Identified the genes which encode the proteins that are involved in methanol reduction with H2to methane. ArticleCASPubMedPubMed Central Google Scholar
Weimer, P. J. & Zeikus, J. G. One carbon metabolism in methanogenic bacteria — cellular characterization and growth of Methanosarcina barkeri. Arch. Microbiol.119, 49–57 (1978). ArticleCASPubMed Google Scholar
Morii, H., Koga, Y. & Nagai, S. Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen limited continuous cultures. Biotechnol. Bioeng.29, 310–315 (1987). ArticleCASPubMed Google Scholar
Karadagli, F. & Rittmann, B. E. Kinetic characterization of Methanobacterium bryantii M.o.H. Environ. Sci. Technol.39, 4900–4905 (2005). ArticleCASPubMed Google Scholar
de Poorter, L. M., Geerts, W. G., Theuvenet, A. P. & Keltjens, J. T. Bioenergetics of the formyl-methanofuran dehydrogenase and heterodisulfide reductase reactions in Methanothermobacter thermoautotrophicus. Eur. J. Biochem.270, 66–75 (2003). ArticleCASPubMed Google Scholar
Schill, N. A., Liu, J. S. & von Stockar, U. Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum. Biotechnol. Bioeng.64, 74–81 (1999). ArticleCASPubMed Google Scholar
Schönheit, P., Moll, J. & Thauer, R. K. Growth parameters (KS, μmax, YS) of Methanobacterium thermoautotrophicum. Arch. Microbiol.127, 59–65 (1980). Article Google Scholar
Wennerhold, J. Heterodisulfid-Reduktasen des Methanothermobacter Typs in Methanosarcina barkeri und Untersuchungen zur Rolle des H2:Heterodisulfid–Oxidoreduktase-Komplex bei der Energiekonservierung in Methanothermobacter marburgensis. Thesis, Philipps Univ., Germany (2004).
Heijnen, J. J. & van Dijken, J. P. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnol. Bioeng.39, 833–858 (1992). ArticleCASPubMed Google Scholar
Stouthamer, A. H. In Search of a Correlation Between Theoretical and Experimental Growth Yields (ed. Quayle, J. R.) (University Park Press, Baltimore, 1979). Google Scholar
Pirt, S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. Lond. Ser. B163, 224–231 (1965). ArticleCAS Google Scholar
Conrad, R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol. Ecol.28, 193–202 (1999). ArticleCAS Google Scholar
Conrad, R. & Wetter, B. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic and other anaerobic bacteria. Arch. Microbiol.155, 94–98 (1990). ArticleCAS Google Scholar
Cord-Ruwisch, R., Seitz, H. D. & Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol.149, 350–357 (1988). ArticleCAS Google Scholar
Hoehler, T. M., Bebout, B. M. & Des Marais, D. J. The role of microbial mats in the production of reduced gases on the early earth. Nature412, 324–327 (2001). ArticleCASPubMed Google Scholar
Lovley, D. R. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol.49, 1530–1531 (1985). CASPubMedPubMed Central Google Scholar
Seitz, H. J., Schink, B., Pfennig, N. & Conrad, R. Energetics of syntrophic ethanol oxidation in defined chemostat cocultures. 1. Energy requirement for H2 production and H2 oxidation. Arch. Microbiol.155, 82–88 (1990). ArticleCAS Google Scholar
Karadagli, F. & Rittmann, B. E. Thermodynamic and kinetic analysis of the H2 threshold for Methanobacterium bryantii M.o.H. Biodegradation18, 439–452 (2007). ArticleCASPubMed Google Scholar
Karadagli, F. & Rittmann, B. E. A mathematical model for the kinetics of Methanobacterium bryantii M.o.H. considering hydrogen thresholds. Biodegradation18, 453–464 (2007). ArticleCASPubMed Google Scholar
Hendrickson, E. L., Haydock, A. K., Moore, B. C., Whitman, W. B. & Leigh, J. A. Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic archaea. Proc. Natl Acad. Sci. USA104, 8930–8934 (2007). ArticleCASPubMedPubMed Central Google Scholar
Galagan, J. E. et al. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res.12, 532–542 (2002). ArticleCASPubMedPubMed Central Google Scholar
Guss, A. M., Mukhopadhyay, B., Zhang, J. K. & Metcalf, W. W. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C1 oxidation/reduction pathway and differences in H2 metabolism between closely related species. Mol. Microbiol.55, 1671–1680 (2005). ArticleCASPubMed Google Scholar
Li, L. Y. et al. Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol. J. Proteome Res.6, 759–771 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wood, G. E., Haydock, A. K. & Leigh, J. A. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J. Bacteriol.185, 2548–2554 (2003). ArticleCASPubMedPubMed Central Google Scholar
Finke, N., Hoehler, T. M. & Jorgensen, B. B. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments. Environ. Microbiol.9, 1060–1071 (2007). ArticleCASPubMed Google Scholar
Müller, V., Blaut, M. & Gottschalk, G. Utilization of methanol plus hydrogen by Methanosarcina barkeri for methanogenesis and growth. Appl. Environ. Microbiol.52, 269–274 (1986). PubMedPubMed Central Google Scholar
Perski, H. J., Moll, J. & Thauer, R. K. Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum. Arch. Microbiol.130, 319–321 (1981). ArticleCAS Google Scholar
Perski, H. J., Schönheit, P. & Thauer, R. K. Sodium dependence of methane formation in methanogenic bacteria. FEBS Lett.143, 323–326 (1982). ArticleCAS Google Scholar
Gottschalk, G. & Thauer, R. K. The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim. Biophys. Acta1505, 28–36 (2001). ArticleCASPubMed Google Scholar
Blaut, M. & Gottschalk, G. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur. J. Biochem.141, 217–222 (1984). ArticleCASPubMed Google Scholar
Sparling, R., Blaut, M. & Gottschalk, G. Bioenergetic studies of Methanosphaera stadtmanae, an obligate H2-methanol utilizing methanogen. Can. J. Microbiol.39, 742–748 (1993). ArticleCAS Google Scholar
Becher, B., Müller, V. & Gottschalk, G. N5-methyl-tetrahydromethanopterin-coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na+-translocating membrane protein. J. Bacteriol.174, 7656–7660 (1992). ArticleCASPubMedPubMed Central Google Scholar
Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R. & Metcalf, W. W. Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc. Natl Acad. Sci. USA99, 5632–5637 (2002). Genetic analysis of the energy metabolism of a methanogen with cytochromes growing on H2and CO2that showed the involvement of the energy-converting hydrogenase Ech in CO2reduction. ArticleCASPubMedPubMed Central Google Scholar
Stojanowic, A. & Hedderich, R. CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor. FEMS Microbiol. Lett.235, 163–167 (2004). ArticleCASPubMed Google Scholar
Künkel, A., Vorholt, J. A., Thauer, R. K. & Hedderich, R. An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur. J. Biochem.252, 467–476 (1998). ArticlePubMed Google Scholar
Meuer, J., Bartoschek, S., Koch, J., Künkel, A. & Hedderich, R. Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur. J. Biochem.265, 325–335 (1999). ArticleCASPubMed Google Scholar
Bott, M. & Thauer, R. K. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur. J. Biochem.168, 407–412 (1987). ArticleCASPubMed Google Scholar
Bott, M. & Thauer, R. K. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem.179, 469–472 (1989). ArticleCASPubMed Google Scholar
Peinemann, S., Muller, V., Blaut, M. & Gottschalk, G. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol.170, 1369–1372 (1988). ArticleCASPubMedPubMed Central Google Scholar
Kaesler, B. & Schönheit, P. The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2 H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2 . Eur. J. Biochem.184, 223–232 (1989). ArticleCASPubMed Google Scholar
Kaesler, B. & Schönheit, P. The sodium cycle in methanogenesis. CO2 reduction to the formaldehyde level in methanogenic bacteria is driven by a primary electrochemical potential of Na+ generated by formaldehyde reduction to CH4 . Eur. J. Biochem.186, 309–316 (1989). ArticleCASPubMed Google Scholar
Ide, T., Bäumer, S. & Deppenmeier, U. Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. J. Bacteriol.181, 4076–4080 (1999). CASPubMedPubMed Central Google Scholar
Murakami, E., Deppenmeier, U. & Ragsdale, S. W. Characterization of the intramolecular electron transfer pathway from 2-hydroxyphenazine to the heterodisulfide reductase from Methanosarcina thermophila. J. Biol. Chem.276, 2432–2439 (2001). ArticleCASPubMed Google Scholar
Pisa, K. Y., Weidner, C., Maischak, H., Kavermann, H. & Müller, V. The coupling ion in the methanoarchaeal ATP synthases: H+ vs. Na+ in the A1A0 ATP synthase from the archaeon Methanosarcina mazei Gö1. FEMS Microbiol. Lett.277, 56–63 (2007). ArticleCASPubMed Google Scholar
Deppenmeier, U. Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Gö1. Arch. Microbiol.164, 370–376 (1995). ArticleCASPubMed Google Scholar
Hamann, N. et al. Cysteine-rich CCG domain contains a novel [4Fe–4S]-cluster binding motif as deduced from studies with subunit B of heterodisulfide reductase from Methanothermobacter marburgensis. Biochemistry46, 12875–12885 (2007). ArticleCASPubMed Google Scholar
Hedderich, R., Hamann, N. & Bennati, M. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron–sulfur cluster. Biol. Chem.386, 961–970 (2005). ArticleCASPubMed Google Scholar
Heiden, S., Hedderich, R., Setzke, E. & Thauer, R. K. Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri. Eur. J. Biochem.213, 529–535 (1993). ArticleCASPubMed Google Scholar
Heiden, S., Hedderich, R., Setzke, E. & Thauer, R. K. Purification of a two-subunit cytochrome _b_-containing heterodisulfide reductase from methanol grown Methanosarcina barkeri. Eur. J. Biochem.221, 855–861 (1994). ArticleCASPubMed Google Scholar
Peinemann, S., Hedderich, R., Blaut, M., Thauer, R. K. & Gottschalk, G. ATP synthesis coupled to electron transfer from H2 to the heterodisulfide of 2-mercaptoethanesulfonate and 7-mercaptoheptanoylthreonine phosphate in vesicle preparations of the methanogenic bacterium strain Gö1. FEBS Lett.263, 57–60 (1990). ArticleCAS Google Scholar
Lewalter, K. & Müller, V. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. Biochim. Biophys. Acta1757, 437–445 (2006). ArticleCASPubMed Google Scholar
Müller, V. et al. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J. Mol. Microbiol. Biotechnol.10, 167–180 (2005). ArticleCASPubMed Google Scholar
Pisa, K. Y., Huber, H., Thomm, M. & Müller, V. A sodium ion-dependent A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J.274, 3928–3938 (2007). ArticleCASPubMed Google Scholar
Vinothkumar, K. R., Smits, S. H. J. & Kuhlbrandt, W. pH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii. EMBO J.24, 2720–2729 (2005). ArticleCASPubMedPubMed Central Google Scholar
Taglicht, D., Padan, E. & Schuldiner, S. Proton sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J. Biol. Chem.268, 5382–5387 (1993). CASPubMed Google Scholar
Padan, E. & Schuldiner, S. Molecular physiology of the Na+/H+ antiporter in Escherichia coli. J. Exp. Biol.196, 443–456 (1994). CASPubMed Google Scholar
Ferry, J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol. Rev.23, 13–38 (1999). ArticleCASPubMed Google Scholar
Bäumer, S. et al. The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J. Biol. Chem.275, 17968–17973 (2000). ArticlePubMed Google Scholar
Tersteegen, A. & Hedderich, R. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur. J. Biochem.264, 930–943 (1999). ArticleCASPubMed Google Scholar
Hedderich, R. Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J. Bioenerg. Biomembr.36, 65–75 (2004). ArticleCASPubMed Google Scholar
Setzke, E., Hedderich, R., Heiden, S. & Thauer, R. K. H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur. J. Biochem.220, 139–148 (1994). Found that MvhADG and HdrABC from a methanogen without cytochromes form a complex that catalyses the reduction of CoM-S-S-CoB with H2. ArticleCASPubMed Google Scholar
Stojanowic, A., Mander, G. J., Duin, E. C. & Hedderich, R. Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Arch. Microbiol.180, 194–203 (2003). ArticleCASPubMed Google Scholar
Alagaratnam, S. et al. A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redox potential. Protein Sci.14, 2284–2295 (2005). ArticleCASPubMedPubMed Central Google Scholar
Xia, D., Esser, L., Yu, L. & Yu, C. A. Structural basis for the mechanism of electron bifurcation at the quinol oxidation site of the cytochrome bc1 complex. Photosyn. Res.92, 17–34 (2007). Ubiquinone-based electron bifurcation in thebc1complex was used as a model for flavin-based electron bifurcation. ArticleCAS Google Scholar
Gunsalus, R. P. & Wolfe, R. S. Stimulation of CO2 reduction to methane by methyl-coenzyme M in extracts of Methanobacterium. Biochem. Biophys. Res. Commun.76, 790–795 (1977). ArticleCASPubMed Google Scholar
Rouvière, P. E. & Wolfe, R. S. Novel biochemistry of methanogenesis. J. Biol. Chem.263, 7913–7916 (1988). Mini-review that contained a figure showing the hypothetical chemical coupling of the first and last steps in methanogenesis from H2and CO2in methanogens without cytochromes. PubMed Google Scholar
Bobik, T. A. & Wolfe, R. S. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptohetanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Proc. Natl Acad. Sci. USA85, 60–63 (1988). Provided evidence that the ferredoxin-dependent reduction of CO2with H2to formyl-methanofuran in cell extracts of a methanogen without cytochromes is CoM-S-S-CoB dependent, which is an indication that ferredoxin reduction with H2is also CoM-S-S-CoB dependent. ArticleCASPubMedPubMed Central Google Scholar
Bobik, T. A. & Wolfe, R. S. Activation of formylmethanofuran synthesis in cell extracts of Methanobacterium thermoautotrophicum. J. Bacteriol.171, 1423–1427 (1989). Reported that the reduction of metronidazole with H2in cell extracts of a methanogen without cytochromes is CoM-S-S-CoB dependent, which is an indication that CoM-S-S-CoB reduction with H2is coupled with ferredoxin reduction with H2. ArticleCASPubMedPubMed Central Google Scholar
Schönheit, P. & Perski, H. J. ATP synthesis driven by a potassium diffusion potential in Methanobacterium thermoautotrophicum is stimulated by sodium. FEMS Microbiol. Lett.20, 263–267 (1983). Article Google Scholar
Schönheit, P. & Beimborn, D. B. Presence of a Na+/H+ antiporter in Methanobacterium thermoautotrophicum and its role in Na+ dependent methanogenesis. Arch. Microbiol.142, 354–361 (1985). Article Google Scholar
Kaesler, B. & Schönheit, P. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials — an explanation for the apparent uncoupler insensitivity of ATP synthesis. Eur. J. Biochem.174, 189–197 (1988). ArticleCASPubMed Google Scholar
Mountfort, D. O., Mörschel, E., Beimborn, D. B. & Schönheit, P. Methanogenesis and ATP synthesis in a protoplast system of Methanobacterium thermoautotrophicum. J. Bacteriol.168, 892–900 (1986). ArticleCASPubMedPubMed Central Google Scholar
Schönheit, P. & Beimborn, D. B. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane. Eur. J. Biochem.148, 545–550 (1985). ArticlePubMed Google Scholar
Dimroth, P. & Cook, G. M. Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv. Microb. Physiol.49, 175–218 (2004). ArticleCASPubMed Google Scholar
Sapra, R., Bagramyan, K. & Adams, M. W. W. A simple energy-conserving system: proton reduction coupled to proton translocation. Proc. Natl Acad. Sci. USA100, 7545–7550 (2003). ArticleCASPubMedPubMed Central Google Scholar
Vgenopoulou, I., Gemperli, A. C. & Steuber, J. Specific modification of a Na+ binding site in NADH:quinone oxidoreductase from Klebsiella pneumoniae with dicyclohexylcarbodiimide. J. Bacteriol.188, 3264–3272 (2006). ArticleCASPubMedPubMed Central Google Scholar
Porat, I. et al. Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis. J. Bacteriol.188, 1373–1380 (2006). ArticleCASPubMedPubMed Central Google Scholar
Schönheit, P. & Beimborn, D. B. Monensin and gramicidin stimulate CH4 formation from H2 and CO2 in Methanobacterium thermoautotrophicum at low external Na+ concentration. Arch. Microbiol.146, 181–185 (1986). Article Google Scholar
Surin, S. et al. Isolation and characterization of an amiloride-resistant mutant of Methanothermobacter thermautotrophicus possessing a defective Na+/H+ antiport. FEMS Microbiol. Lett.269, 301–308 (2007). ArticleCASPubMed Google Scholar
Sakai, S. et al. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl. Environ. Microbiol.73, 4326–4331 (2007). ArticleCASPubMedPubMed Central Google Scholar
Erkel, C., Kube, M., Reinhardt, R. & Liesack, W. Genome of rice cluster I archaea — the key methane producers in the rice rhizosphere. Science313, 370–372 (2006). ArticleCASPubMed Google Scholar
Haveman, S. A. et al. Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J. Bacteriol.185, 4345–4353 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhang, W. et al. A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics6, 4286–4299 (2006). ArticleCASPubMed Google Scholar
Imkamp, F., Biegel, E., Jayamani, E., Buckel, W. & Müller, V. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J. Bacteriol.189, 8145–8153 (2007). ArticleCASPubMedPubMed Central Google Scholar
Krüger, M., Treude, T., Wolters, H., Nauhaus, K. & Boetius, A. Microbial methane turnover in different marine habitats. Palaeogeogr. Palaeoclimatol. Palaeoecol.227, 6–17 (2005). Article Google Scholar
Lee, S. Y. & Holder, G. D. Methane hydrates potential as a future energy source. Fuel Process. Technol.71, 181–186 (2001). ArticleCAS Google Scholar
Lelieveld, J., Crutzen, P. J. & Dentener, F. J. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem. Phys. Meteorol.50, 128–150 (1998). Article Google Scholar