On the rocks: the microbiology of Antarctic Dry Valley soils (original) (raw)

References

  1. Boyd, W. L., Staley, J. T. & Boyd, J. W. in Antarctic Soils and Soil Forming Processes. Antarctic Research Series 125–159 (American Geophysical Union, Washington DC, 1966).
    Google Scholar
  2. Bockheim, J. G. Functional diversity of soils along environmental gradients in the Ross Sea region, Antarctica. Geoderma 144, 32–42 (2008).
    Article CAS Google Scholar
  3. Vincent, W. F. Microbial Ecosystems of Antarctica (Cambridge Univ. Press, Cambridge, UK, 1988).
    Google Scholar
  4. Doran, P. T. et al. Antarctic climate cooling and terrestrial ecosystem response. Nature 415, 517–520 (2002).
    Article CAS PubMed Google Scholar
  5. Aislabie, J. et al. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3041–3056 (2006).
    Article CAS Google Scholar
  6. Dana, G. L., Wharton, R. A. & Dubayah, R. in Ecosystem Dynamics in A Polar Desert: the Mcmurdo Dry Valleys, Antarctica. Antarctic Research Series 39–64 (American Geophysical Union, Washington DC, 1998).
    Google Scholar
  7. Poage, M. A., Barrettt, J. E., Virginia, R. A. & Wall, D. H. The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arct. Antarct. Alp. Res. 40, 119–128 (2008).
    Article Google Scholar
  8. Smith, R. C. et al. Ozone depletion — ultraviolet-radiation and phytoplankton biology in Antarctic waters. Science 255, 952–959 (1992).
    Article CAS PubMed Google Scholar
  9. Tosi, S., Onofri, S., Brusoni, M., Zucconi, L. & Vishniac, H. Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol. 28, 470–482 (2005).
    Article Google Scholar
  10. Vishniac, H. S. in Antarctic Microbiology 297–341 (Wiley-Liss, New York, 1993).
    Google Scholar
  11. Claridge, G. G. C. & Campbell, I. B. The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci. 123, 377–384 (1977).
    Article CAS Google Scholar
  12. Bockheim, J. G. Properties and classification of cold desert soils from Antarctica. Soil Sci. Soc. Am. J. 61, 224–231 (1997).
    Article CAS Google Scholar
  13. Treonis, A. M., Wall, D. H. & Virginia, R. A. The use of anhydrobiosis by soil nematodes in the Antarctic Dry Valleys. Funct. Ecol. 14, 460–467 (2000).
    Article Google Scholar
  14. Scott, R. F. The Voyage of the Discovery Vol. 1 (Smith, Elder & Co., London, UK, 1905).
    Google Scholar
  15. Horowitz, N. H., Cameron, R. E. & Hubbard, J. S. Microbiology of the Dry Valleys of Antarctica. Science 176, 242–245 (1972).
    Article CAS PubMed Google Scholar
  16. Smith, J. J., Ah Tow, L., Stafford, W., Cary, C. & Cowan, D. A. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51, 413–421 (2006). The first application of molecular tools to demonstrate that the microbial diversity in Dry Valley soils is higher than was expected.
    Article PubMed Google Scholar
  17. Barrett, J. E. et al. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct. Sci. 18, 535–548 (2006).
    Article Google Scholar
  18. Yergeau, E., Newsham, K. K., Pearce, D. A. & Kowalchuk, G. A. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ. Microbiol. 9, 2670–2682 (2007). An excellent paper looking at the diversity of soil bacteria across a broad latitudinal gradient of Antarctic Peninsula environments.
    Article CAS PubMed Google Scholar
  19. Niederberger, T. D. et al. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10, 1713–1724 (2008).
    Article CAS PubMed Google Scholar
  20. Cowan, D., Russell, N., Mamais, A. & Sheppard, D. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6, 431–436 (2002).
    Article CAS PubMed Google Scholar
  21. Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Chang. Biol. 14, 2249–2261 (2008).
    Article Google Scholar
  22. Barrett, J. E., Virginia, R. A., Wall, D. H. & Adams, B. J. Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystem. Glob. Chang. Biol. 14, 1734–1744 (2008).
    Article Google Scholar
  23. Witherow, R. A. et al. The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys landscape: evidence from snow pit analysis. Antarct. Sci. 18, 497–505 (2006).
    Article Google Scholar
  24. Chinn, T. H. in Physical and Biogeochemical Processes in Antarctic Lakes 1–51 (American Geophysical Union, Washington DC, 1993).
    Book Google Scholar
  25. Nylen, T. H., Fountain, A. G. & Doran, P. T. Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land, Antarctica. J. Geophys. Res. 109, D03114 (2004).
    Article Google Scholar
  26. Bockheim, J. G. Landform and soil development in the McMurdo Dry Valleys, Antarctica: a regional synthesis. Arct. Antarct. Alp. Res. 34, 308–317 (2002).
    Article Google Scholar
  27. Hagedorn, B., Sletten, R. S. & Hallet, B. Sublimation and ice condensation in hyperarid soils: modeling results using field data from Victoria Valley, Antarctica. J. Geophys. Res. 112, F03017 (2007).
    Article Google Scholar
  28. Dickinson, W. W. & Rosen, M. R. Antarctic permafrost: An analogue for water and diagenetic minerals on Mars. Geology 31, 199–202 (2003).
    Article CAS Google Scholar
  29. Nkem, J. N. et al. Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol. 29, 643–651 (2006).
    Article Google Scholar
  30. Adams, B. J. et al. Diversity and distribution of Victoria Land biota. Soil Biol. Biochem. 38, 3003–3018 (2006).
    Article CAS Google Scholar
  31. Freckman, D. W. & Virginia, R. A. Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369 (1997). This work established a conceptual model for delineating suitable and unsuitable soil habitats for invertebrates in the McMurdo Dry Valleys on the basis of abiotic properties.
    Article Google Scholar
  32. Thomas, D. N. Photosynthetic microbes in freezing deserts. Trends Microbiol. 13, 87–88 (2005).
    Article CAS PubMed Google Scholar
  33. Friedmann, E. I. (ed.) Antarctic Microbiology (Wiley-Liss, New York, 1993). Although now somewhat out of date, this text still stands as a benchmark survey of the biology of Antarctic terrestrial and marine microbial ecology.
    Google Scholar
  34. Novis, P. M. et al. Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Glob. Chang. Biol. 13, 1224–1237 (2007).
    Article Google Scholar
  35. Matsumoto, G. I., Hirai, A., Hirota, K. & Watanuki, K. Organic geochemistry of the Mcmurdo Dry Valleys soil, Antarctica. Org. Geochem. 16, 781–791 (1990).
    Article CAS Google Scholar
  36. Burkins, M. B., Virginia, R. A., Chamberlain, C. P. & Wall, D. H. Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81, 2377–2391 (2000). This study shows that some Dry Valley soil food webs are heterotrophic, deriving their energy from external and, in some cases, ancient inputs of organic matter, whereas other food webs seem to have autotrophic bases.
    Article Google Scholar
  37. Elberling, B. et al. Distribution and dynamics of soil organic matter in an Antarctic dry valley. Soil Biol. Biochem. 38, 3095–3106 (2006).
    Article CAS Google Scholar
  38. Hopkins, D. W. et al. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environ. Microbiol. 11, 597–608 (2009).
    Article CAS PubMed Google Scholar
  39. Hopkins, D. W. et al. Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc. Biol. Sci. 273, 2687–2695 (2006). An exceptional review of the effects of the abiotic factors that influence microbial activity in Dry Valley soils.
    Article CAS PubMed PubMed Central Google Scholar
  40. Cameron, R. E., King, J. & David, C. N. Soil toxocity in Antarctic Dry Valleys. Antarct. J. US 3, 164–166 (1968).
    Google Scholar
  41. Horowitz, N. H. et al. Sterile soil from Antarctic organic analysis. Science 164, 1054–1056 (1969).
    Article CAS PubMed Google Scholar
  42. Benoit, R. E. & Hall, C. L. in Antarctic Ecology 697–701 (Academic, London, UK, 1970).
    Google Scholar
  43. Cameron, R. E. in Antarctic Terrestrial Biology. Antarctic Research Series 195–260 (American Geophysical Union, Washington DC, 1972).
    Book Google Scholar
  44. Cameron, R. E. & Ford, A. B. Baseline analysis of soils from the Pensacola Mountains. Antarct. J. US 9, 116–119 (1974).
    Google Scholar
  45. Cameron, R. E., King, J. & David, C. N. in Antarctic Ecology 702–716 (Academic, London, UK, 1970).
    Google Scholar
  46. Vishniac, W. V. & Mainzer, S. E. Soil microbiology studied in situ in the Dry Valleys of Antarctica. Antarct. J. US 7, 88–89 (1972).
    Google Scholar
  47. Wynn-Williams, D. D. Ecological aspects of Antarctic microbiology. Adv. Microbial. Ecol. 11, 71–146 (1990).
    Article Google Scholar
  48. Sjöling, S. & Cowan, D. A. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles 7, 275–282 (2003).
    Article PubMed CAS Google Scholar
  49. Ramsey, A. J. & Stannard, R. E. Numbers and viability of bacteria in ornothogenic soils of Antarctica. Polar Biol. 5, 195–198 (1986).
    Article Google Scholar
  50. Buckley, D. H. & Schmidt, T. M. in Biodiversity of Microbial Life: Foundation of Earths Biosphere 183–208 (Wiley-Liss, New York, 2001).
    Google Scholar
  51. DeLong, E. F. Microbial seascapes revisited. Curr. Opin. Microbiol. 4, 290–295 (2001).
    Article CAS PubMed Google Scholar
  52. Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).
    Article PubMed CAS Google Scholar
  53. Johnson, R. M., Madden, J. M. & Swafford, J. R. in Terrestrial Biology III. Antarctic Research Series 35–64 (American Geophysical Union, Washington DC, 1978).
    Book Google Scholar
  54. de la Torre, J. R., Goebel, B. M., Friedmann, E. I. & Pace, N. R. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69, 3858–3867 (2003). One of the first reports of the application of molecular phylogenetic methods to the study of microbial diversity in an Antarctic terrestrial system.
    Article CAS PubMed PubMed Central Google Scholar
  55. Aislabie, J. M., Jordan, S. & Barker, G. M. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144, 9–20 (2008).
    Article CAS Google Scholar
  56. Khan, N. Hypolithic Communities in the Miers Valley, Eastern Antarctica. Thesis, Univ. Western Cape, South Africa (2008).
    Google Scholar
  57. Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  58. Chanal, A. et al. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ. Microbiol. 8, 514–525 (2006).
    Article CAS PubMed Google Scholar
  59. Babalola, O. O. et al. Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ. Microbiol. 11, 566–576 (2009).
    Article CAS PubMed Google Scholar
  60. Yergeau, E. et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol. Ecol. 59, 436–451 (2007).
    Article CAS PubMed Google Scholar
  61. Vestal, J. R. Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl. Environ. Microbiol. 54, 960–965 (1988).
    CAS PubMed PubMed Central Google Scholar
  62. Burkins, M. B., Virginia, R. A. & Wall, D. H. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Glob. Chang. Biol. 7, 113–125 (2001). This is the first study to report estimates of soil respiration in the Dry Valleys and to consider ecosystem processes in the context of trophic dynamics.
    Article Google Scholar
  63. Parsons, A. N., Barrett, J. E., Wall, D. H. & Virginia, R. A. Soil carbon dioxide flux in Antarctic dry valley ecosystems. Ecosystems 7, 286–295 (2004).
    Article CAS Google Scholar
  64. Hopkins, D. W. et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol. Biochem. 38, 3130–3140 (2006). This paper provides insights into the environmental controls of microbial activity in Dry Valley soils.
    Article CAS Google Scholar
  65. Friedmann, E. I., Kappen, L., Meyer, M. A. & Nienow, J. A. Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb. Ecol. 25, 51–69 (1993). The most comprehensive contemporary paper that takes a functional approach to microbial communities in the Dry Valleys, with the first quantitative assessment of carbon cycling.
    Article CAS PubMed Google Scholar
  66. Howard-Williams, C., Hawes, I., Schwarz, A. M. & Hall, J. A. in Ecosystem Processes in Antarctic Ice-Free Landscapes (eds Lyons, W. B., Howard Williams, C. & Hawes, I.) 155–170 (Balkema, Rotterdam, 1997).
    Google Scholar
  67. Raich, J. W. & Schlesinger, W. H. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B Chem. Phys. Meteorol. 44, 81–99 (1992).
    Article Google Scholar
  68. Brinkmann, M., Pearce, D. A., Convey, P. & Ott, S. The cyanobacterial community of polygon soils at an inland nunatuk. Polar Biol. 30, 1505–1511 (2007).
    Article Google Scholar
  69. Wood, S. A., Rueckert, A., Cowan, D. A. & Cary, S. C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2, 308–320 (2008).
    Article CAS PubMed Google Scholar
  70. Arenz, B. E., Held, B. W., Jurgens, J. A., Farrell, R. L. & Blanchette, R. A. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol. Biochem. 38, 3057–3064 (2006).
    Article CAS Google Scholar
  71. Cowan, D. A. & Ah Tow, L. Endangered Antarctic environments. Annu. Rev. Microbiol. 58, 649–690 (2004).
    Article CAS PubMed Google Scholar
  72. Schwarz, A. M. J., Green, J. D., Green, T. G. A. & Seppelt, R. D. Invertebrates associated with moss communities at Canada Glacier, Southern Victoria-Land, Antarctica. Polar Biol. 13, 157–162 (1993).
    Article Google Scholar
  73. Lawley, B., Ripley, S., Bridge, P. & Convey, P. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol. 70, 5963–5972 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  74. Vincent, W. F. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct. Sci. 12, 374–385 (2000).
    Article Google Scholar
  75. Marshall, W. A. Biological particles over Antarctica. Nature 383, 680 (1996).
    Article CAS Google Scholar
  76. Russell, N. J. & Cowan, D. A. Handling of psychrophilic microorganisms. Extremophiles 35, 371–393 (2006).
    Google Scholar
  77. Smith, M. C., Bowman, J. P., Scott, F. J. & Line, M. A. Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 12, 177–184 (2000).
    Article Google Scholar
  78. Friedmann, E. I. Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053 (1982).
    Article CAS PubMed Google Scholar
  79. Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 37, 275–316 (1999).
    Article CAS Google Scholar
  80. Wynn-Williams, D. D., Edwards, H. G. M. & Garcia-Pichel, F. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur. J. Phycol. 34, 381–391 (1999).
    Article Google Scholar
  81. Cockell, C. S. & Stokes, M. D. Ecology: widespread colonization by polar hypoliths. Nature 431, 414 (2004).
    Article CAS PubMed Google Scholar
  82. Friedmann, E. I., Hua, M. & Ocampo-Friedmann, R. Cryptoendolithic lichen and cyanobacterial communities in the Ross desert, Antarctica. Polarforschung 58, 251–259 (1988).
    CAS PubMed Google Scholar
  83. Siebert, J. et al. Cryptoendolithic microorganisms from Antarctic sandstone of linnaeus terrace (Asgard range): diversity, properties and interactions. Biodivers. Conserv. 5, 1337–1363 (1996).
    Article Google Scholar
  84. Schlesinger, W. H. et al. Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84, 3222–3231 (2003).
    Article Google Scholar
  85. Dort, W. in Terrestrial Biology III. Antarctic research series 123–154 (American Geophysical Union, Washington DC, 1982).
    Google Scholar
  86. Barwick, R. E. & Balham, R. W. Mummified seal carcasses in a deglaciated region of South Victoria Land, Antarctica. Tuatara 15, 165–180 (1967).
    Google Scholar
  87. Dort, W. Mummified Seals of Southern Victoria Land. Antarct. J. US 5, 210–211 (1971).
    Google Scholar
  88. Broeckert, W. A. & Olson, E. A. Lamont radiocarbon measurements VIII. Radiocarbon 3, 176–204 (1961).
    Article Google Scholar
  89. Smith, C. R. & Baco, A. R. Ecology of whale falls at the deep-sea floor. Oceanogr. Mar. Biol. 41, 311–354 (2003).
    Google Scholar
  90. Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).
    Article Google Scholar
  91. Chapman, W. L. & Walsh, J. E. A synthesis of Antarctic temperatures. J. Clim. 20, 4096–4117 (2007).
    Article Google Scholar
  92. Steig, E. J. et al. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009); corrigendum 460, 766 (2009).
    Article CAS PubMed Google Scholar
  93. Doran, P. T. et al. Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarct. Sci. 20, 499–509 (2008).
    Article Google Scholar
  94. Foreman, C., Wolf, C. F. & Priscu, J. C. Impact of episodic warming events on the physical, chemical and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry 10, 239–268 (2004).
    Article CAS Google Scholar
  95. Esposito, R. M. M. et al. Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys. Res. Lett. 33, L07406 (2006). This paper is an elegant analysis of the influence of climate variation on the relative abundance of endemic and cosmopolitan diatom species.
    Article Google Scholar
  96. Ah Tow, L. & Cowan, D. A. Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles 9, 385–389 (2005).
    Article PubMed Google Scholar
  97. Hogg, I. D. et al. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol. Biochem. 38, 3035–3040 (2006).
    Article CAS Google Scholar
  98. Yergeau, E. et al. Environmental microarray analyses of Antarctic soil microbial communities. ISME J. 3, 340–351 (2009). An exciting contribution using cutting-edge microarray techniques to survey microbial communities in Antarctic soils.
    Article CAS PubMed Google Scholar
  99. Barrett, J. E. et al. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118 (2004).
    Article Google Scholar
  100. Barrett, J. E. et al. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol. Biochem. 38, 3019–3034 (2006).
    Article CAS Google Scholar
  101. Kennedy, A. D. Water as a limiting factor in the Antarctic terrestrial environment — a biogeographical synthesis. Arct. Alp. Res. 25, 308–315 (1993).
    Article Google Scholar
  102. Treonis, A. M., Wall, D. H. & Virginia, R. A. Invertebrate biodiversity in Antarctic dry valley soils and sediments. Ecosystems 2, 482–492 (1999).
    Article Google Scholar
  103. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  104. Liles, M. R., Manske, B. F., Bintrim, S. B., Handelsman, J. & Goodman, R. M. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl. Environ. Microbiol. 69, 2684–2691 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  105. Lipson, D. A. & Schmidt, S. K. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl. Environ. Microbiol. 70, 2867–2879 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  106. McCaig, A. E. et al. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl. Environ. Microbiol. 65, 213–220 (1999).
    CAS PubMed PubMed Central Google Scholar
  107. Sun, H. Y., Deng, S. P. & Raun, W. R. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl. Environ. Microbiol. 70, 5868–5874 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  108. Bate, D. B., Barrett, J. E., Poage, M. A. & Virginia, R. A. Soil phosphorus cycling in an Antarctic polar desert. Geoderma 144, 21–31 (2008).
    Article CAS Google Scholar
  109. Schade, J. D. & Hobbie, S. E. Spatial and temporal variation in islands of fertility in the Sonoran Desert. Biogeochemistry 73, 541–553 (2005).
    Article Google Scholar
  110. Illeris, L., Michelsen, A. & Jonasson, S. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry 65, 15–29 (2003).
    Article CAS Google Scholar

Download references