Towards a point-of-care test for active tuberculosis: obstacles and opportunities (original) (raw)
WHO. Global tuberculosis control: WHO Report 2010 (WHO, Geneva, 2010).
WHO. Global tuberculosis control: surveillance, planning, financing (WHO, Geneva, 2009).
Fox, W., Ellard, G. A. & Mitchison, D. A. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int. J. Tuberc. Lung Dis.3, S231–S279 (1999). CASPubMed Google Scholar
Lienhardt, C. et al. Factors affecting time delay to treatment in a tuberculosis control programme in a sub-Saharan African country: the experience of The Gambia. Int. J. Tuberc. Lung Dis.5, 233–239 (2001). CASPubMed Google Scholar
Golub, J. E. et al. Delayed tuberculosis diagnosis and tuberculosis transmission. Int. J. Tuberc. Lung Dis.10, 24–30 (2006). CASPubMed Google Scholar
Rajeswari, R. et al. Factors associated with patient and health system delays in the diagnosis of tuberculosis in South India. Int. J. Tuberc. Lung Dis.6, 789–795 (2002). CASPubMed Google Scholar
Salaniponi, F. M. et al. Care seeking behaviour and diagnostic processes in patients with smear-positive pulmonary tuberculosis in Malawi. Int. J. Tuberc. Lung Dis.4, 327–332 (2000). CASPubMed Google Scholar
Storla, D. G., Yimer, S. & Bjune, G. A. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health8, 15 (2008). This article reviews the factors contributing to the delayed detection of TB and to the subsequent failure of patients to access treatment, all of which are current major obstacles to controlling the disease. ArticlePubMedPubMed Central Google Scholar
Lonnroth, K., Thuong, L. M., Linh, P. D. & Diwan, V. K. Delay and discontinuity—a survey of TB patients' search of a diagnosis in a diversified health care system. Int. J. Tuberc. Lung Dis.3, 992–1000 (1999). CASPubMed Google Scholar
Keeler, E. et al. Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature444 (Suppl. 1), 49–57 (2006). The authors estimate the potential global impact of better TB tests by using a decision tree model to simulate the introduction of improved tests for adult pulmonary patients. ArticlePubMed Google Scholar
McNerney, R. Symposium: Point-of-care tests for tuberculosis. Rev. Port. Pneumol.16, 49–55 (2010). Article Google Scholar
Foulds, J. & O'Brien, R. New tools for the diagnosis of tuberculosis: the perspective of developing countries. Int. J. Tuberc. Lung Dis.2, 778–783 (1998). CASPubMed Google Scholar
Steingart, K. R., Ramsay, A. & Pai, M. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev. Anti Infect. Ther.5, 327–331 (2007). ArticlePubMed Google Scholar
Golden, M. P. & Vikram, H. R. Extrapulmonary tuberculosis: an overview. Am. Fam. Physician72, 1761–1768 (2005). PubMed Google Scholar
Perkins, M. D. & Kritski, A. L. Diagnostic testing in the control of tuberculosis. Bull. World Health Organ.80, 512–513 (2002). PubMedPubMed Central Google Scholar
Steingart, K. R. et al. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. PLoS Med.4, e202 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lemaire, J. F. & Casenghi, M. New diagnostics for tuberculosis: fulfilling patient needs first. J. Int. AIDS Soc.13, 40 (2010). This article discusses the desired specifications for new TB tests that will improve access to treatment for patients in resource-limited settings. ArticlePubMedPubMed Central Google Scholar
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69, 89–95 (2001).
Doherty, M., Wallis, R. S. & Zumla, A. Biomarkers for tuberculosis disease status and diagnosis. Curr. Opin. Pulm. Med.15, 181–187 (2009). ArticlePubMed Google Scholar
Parida, S. K. & Kaufmann, S. H. The quest for biomarkers in tuberculosis. Drug Discov. Today15, 148–157 (2010). ArticleCASPubMed Google Scholar
Jacobsen, M., Mattow, J., Repsilber, D. & Kaufmann, S. H. Novel strategies to identify biomarkers in tuberculosis. Biol. Chem.389, 487–495 (2008). The identification of improved biomarkers is a research priority, and this article describes the application of new technologies such as bioinformatics, transcriptomics, proteomics, metabolomics and lipidomics to TB biomarker discovery. ArticleCASPubMed Google Scholar
Wallis, R. S. et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect. Dis.10, 68–69 (2010). ArticlePubMed Google Scholar
Steingart, K. R. et al. Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin. Vaccine Immunol.16, 260–276 (2009). ArticleCASPubMed Google Scholar
Abebe, F. C., Holm-Hansen, C., Wiker, H. G. & Bjune, G. Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand. J. Infect. Dis.66, 176–191 (2007). CAS Google Scholar
Special Programme for Research & Training in Tropical Diseases. Laboratory-based evaluation of 19 commercially available rapid diagnostic tests for tuberculosis (WHO, Geneva, 2008). This report presents the results from a project evaluating rapid TB tests, and demonstrates the need for improved evaluation and regulation to discourage the marketing of substandard tests.
Beyene, D. et al. Serodiagnosis of tuberculous lymphadenitis using a combination of antigens. J. Infect. Dev. Ctries4, 96–102 (2010). ArticleCASPubMed Google Scholar
Zhang, S. L. et al. Development and evaluation of a novel multiple-antigen ELISA for serodiagnosis of tuberculosis. Tuberculosis (Edinb.)89, 278–284 (2009). ArticleCAS Google Scholar
Kunnath-Velayudhan, S. et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc. Natl Acad. Sci. USA107, 14703–14708 (2010). ArticlePubMedPubMed Central Google Scholar
Davies, D. H. et al. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA102, 547–552 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. et al. A proteome-scale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development. J. Proteome Res.9, 4812–4822 (2010). ArticleCASPubMed Google Scholar
Weldingh, K., Rosenkrands, I., Okkels, L. M., Doherty, T. M. & Andersen, P. Assessing the serodiagnostic potential of 35 Mycobacterium tuberculosis proteins and identification of four novel serological antigens. J. Clin. Microbiol.43, 57–65 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bahk, Y. Y. et al. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics4, 3299–3307 (2004). ArticleCASPubMed Google Scholar
Sartain, M. J., Slayden, R. A., Singh, K. K., Laal, S. & Belisle, J. T. Disease state differentiation and identification of tuberculosis biomarkers via native antigen array profiling. Mol. Cell Proteomics5, 2102–2113 (2006). ArticleCASPubMed Google Scholar
Agranoff, D. et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet368, 1012–1021 (2006). ArticleCASPubMedPubMed Central Google Scholar
Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature466, 973–977 (2010). ArticleCASPubMedPubMed Central Google Scholar
Palomino, J. C., Cardoso Leao, S. & Ritacco, V. Tuberculosis 2007: from basic science to patient care. Tuberculosis Textbook[online] (2007). Google Scholar
Flores, L. L., Pai, M., Colford, J. M. Jr & Riley, L. W. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression. BMC Microbiol.5, 55 (2005). ArticleCASPubMedPubMed Central Google Scholar
Telenti, A. et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet341, 647–650 (1993). ArticleCASPubMed Google Scholar
Traore, H., Fissette, K., Bastian, I., Devleeschouwer, M. & Portaels, F. Detection of rifampicin resistance in Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. Int. J. Tuberc. Lung Dis.4, 481–484 (2000). CASPubMed Google Scholar
Temple, B. et al. Rate and amplification of drug resistance among previously-treated patients with tuberculosis in Kampala, Uganda. Clin. Infect. Dis.47, 1126–1134 (2008). ArticlePubMed Google Scholar
Daniel, T. M. Antibody and antigen detection for the immunodiagnosis of tuberculosis: why not? What more is needed? Where do we stand today? J. Infect. Dis.158, 678–680 (1988). ArticleCASPubMed Google Scholar
Chatterjee, D., Bozic, C. M., McNeil, M. & Brennan, P. J. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J. Biol. Chem.266, 9652–9660 (1991). CASPubMed Google Scholar
Dheda, K. et al. Clinical utility of a commercial LAM-ELISA assay for TB diagnosis in HIV-infected patients using urine and sputum samples. PLoS ONE5, e9848 (2010). This article describes a potential application of a POC urine test to detect TB in HIV-positive patients, but also demonstrates the low sensitivity of the test in the general population; the exploratory use of this test in analysis of sputum samples shows a poor specificity. ArticleCASPubMedPubMed Central Google Scholar
Patel, V. B. et al. Utility of a novel lipoarabinomannan assay for the diagnosis of tuberculous meningitis in a resource-poor high-HIV prevalence setting. CerebrospinalFluid Res.6, 13 (2009). Google Scholar
Boehme, C. et al. Detection of mycobacterial lipoarabinomannan with an antigen-capture ELISA in unprocessed urine of Tanzanian patients with suspected tuberculosis. Trans. R. Soc. Trop. Med. Hyg.99, 893–900 (2005). ArticleCASPubMed Google Scholar
Mutetwa, R. et al. Diagnostic accuracy of commercial urinary lipoarabinomannan detection in African tuberculosis suspects and patients. Int. J. Tuberc. Lung Dis.13, 1253–1259 (2009). CASPubMed Google Scholar
Daley, P. et al. Blinded evaluation of commercial urinary lipoarabinomannan for active tuberculosis: a pilot study. Int. J. Tuberc. Lung Dis.13, 989–995 (2009). CASPubMed Google Scholar
Shah, M. et al. Diagnostic accuracy of a urine lipoarabinomannan test for tuberculosis in hospitalized patients in a High HIV prevalence setting. J. Acquir. Immune Defic. Syndr.52, 145–151 (2009). ArticlePubMedPubMed Central Google Scholar
Lawn, S. D. et al. Urine lipoarabinomannan assay for tuberculosis screening before antiretroviral therapy diagnostic yield and association with immune reconstitution disease. AIDS23, 1875–1880 (2009). ArticlePubMed Google Scholar
Beste, D. J. et al. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol.8, R89 (2007). ArticleCASPubMedPubMed Central Google Scholar
Weetjens, B. J. et al. African pouched rats for the detection of pulmonary tuberculosis in sputum samples. Int. J. Tuberc. Lung Dis.13, 737–743 (2009). PubMed Google Scholar
Syhre, M. & Chambers, S. T. The scent of Mycobacterium tuberculosis. Tuberculosis (Edinb.)88, 317–323 (2008). ArticleCAS Google Scholar
Spooner, A. D., Bessant, C., Turner, C., Knobloch, H. & Chambers, M. Evaluation of a combination of SIFT-MS and multivariate data analysis for the diagnosis of Mycobacterium bovis in wild badgers. Analyst134, 1922–1927 (2009). ArticleCASPubMed Google Scholar
Phillips, M. et al. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb.)90, 145–151 (2010). ArticleCAS Google Scholar
Syhre, M., Manning, L., Phuanukoonnon, S., Harino, P. & Chambers, S. T. The scent of Mycobacterium tuberculosis – Part II breath. Tuberculosis (Edinb.)89, 263–266 (2009). ArticleCAS Google Scholar
Fend, R. et al. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J. Clin. Microbiol.44, 2039–2045 (2006). ArticlePubMedPubMed Central Google Scholar
Fend, R. et al. Use of an electronic nose to diagnose Mycobacterium bovis infection in badgers and cattle. J. Clin. Microbiol.43, 1745–1751 (2005). ArticleCASPubMedPubMed Central Google Scholar
Knobloch, H., Turner, C., Spooner, A. & Chambers, M. Methodological variability using electronic nose technology for headspace analysis. AIP Conf. Proc.1137, 327–330 (2009). ArticleCAS Google Scholar
Knobloch, H., Turner, C., Spooner, A. & Chambers, M. Methodological variation in headspace analysis of liquid samples using electronic nose. Sens. Actuators B Chem.139, 353–360 (2009). ArticleCAS Google Scholar
Kolk, A. et al. Electronic-nose technology in diagnosis of TB patients using sputum samples. J. Clin. Microbiol.48, 4235–4238 (2010). ArticlePubMedPubMed Central Google Scholar
Phillips, M. et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb.)87, 44–52 (2007). ArticleCAS Google Scholar
Weigl, B., Domingo, G., Labarre, P. & Gerlach, J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip8, 1999–2014 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ikada, Y. & Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun.21, 117–132 (2000). ArticleCAS Google Scholar
Poller, R. C. Reclamation of waste plastics and rubber: recovery of materials and energy. J. Chem. Technol. Biotechnol.30, 152–160 (1980). ArticleCAS Google Scholar
Helb, D. et al. Rapid detection of Mycobacterium tuberculosis and rifampin-resistance using on-demand, near patient technology. J. Clin. Microbiol.48, 229–237 (2009). ArticleCASPubMedPubMed Central Google Scholar
Banada, P. P. et al. Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J. Clin. Microbiol.48, 3551–3557 (2010). ArticlePubMedPubMed Central Google Scholar
Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med.363, 1005–1015 (2010). This article by the test developers and their collaborators presents data on the performance of the Xpert™MTB/RIF assay, a laboratory- or clinic-based test that diagnoses TB, detects rifampicin resistance, requires little training and provides a result in under 2 hours. ArticleCASPubMedPubMed Central Google Scholar
Van Ness, J., Van Ness, L. K. & Galas, D. J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl Acad. Sci. USA100, 4504–4509 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fang, R. et al. Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens. J. Clin. Microbiol.47, 845–847 (2009). ArticleCASPubMed Google Scholar
Soo, P. C. et al. A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol. Cell. Probes23, 240–246 (2009). ArticleCASPubMed Google Scholar
Tan, E. et al. Isothermal DNA amplification coupled with DNA nanosphere-based colorimetric detection. Anal. Chem.77, 7984–7992 (2005). ArticleCASPubMed Google Scholar
Mori, Y., Nagamine, K., Tomita, N. & Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun.289, 150–154 (2001). ArticleCASPubMed Google Scholar
Boehme, C. C. et al. Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol.45, 1936–1940 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lutz, S. et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip10, 887–893 (2010). ArticleCASPubMed Google Scholar
Hanlon, E. B. et al. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol.45, R1–R59 (2000). ArticleCASPubMed Google Scholar
Ozaki, Y., Cho, R., Ikegaya, K., Muraishi, S. & Kawauchi, K. Potential of near-infrared Fourier-transform Raman-spectroscopy in food analysis. Appl. Spectrosc.46, 1503–1507 (1992). ArticleCAS Google Scholar
McNerney, R. et al. Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infect. Dis.10, 161 (2010). ArticlePubMedPubMed Central Google Scholar
Liu, G. et al. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem.79, 7644–7653 (2007). ArticleCASPubMed Google Scholar
Vo-Dinh, T., Cullum, B. M. & Stokes, D. L. Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens. Actuator B Chem.74, 2–11 (2001). ArticleCAS Google Scholar
Jiang, X. H., Liu, W. Q., Chen, J. J. & Lin, X. Q. Application of DNA nanotechnology. Prog. Chem.19, 608–613 (2007). CAS Google Scholar
Qin, D. et al. Fluorescent nanoparticle-based indirect immunofluorescence microscopy for detection of Mycobacterium tuberculosis. J. Biomed. Biotechnol.2007, 89364 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yager, P. et al. Microfluidic diagnostic technologies for global public health. Nature442, 412–418 (2006). ArticleCASPubMed Google Scholar
Baptista, P. V., Koziol-Montewka, M., Paluch-Oles, J., Doria, G. & Franco, R. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin. Chem.52, 1433–1434 (2006). ArticleCASPubMed Google Scholar
Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip–NMR biosensor for detection and molecular analysis of cells. Nature Med.14, 869–874 (2008). ArticleCASPubMed Google Scholar
Chun, A. L. Nanoparticles offer hope for TB detection. Nature Nanotech.4, 698–699 (2009). ArticleCAS Google Scholar
Harrington, M, Morgan, S. & Syed, J. 2009 Report on Tuberculosis Research Funding Trends, 2005–2008 2nd edn (Treatment Action Group, New York, 2010). Google Scholar
Peeling, R. W. & Mabey, D. Point-of-care tests for diagnosing infections in the developing world. Clin. Microbiol. Infect.16, 1062–1069 (2010). This article discusses the advantages of POC diagnostics for infectious diseases, and the potential of such tests to reduce morbidity and mortality in developing countries. ArticleCASPubMed Google Scholar
Pai, M., Minion, J., Steingart, K. & Ramsay, A. New and improved tuberculosis diagnostics: evidence, policy, practice, and impact. Curr. Opin. Pulm. Med.16, 271–284 (2010). PubMed Google Scholar
WHO. The global plan to stop TB 2011–2015: transforming the fight towards elimination of tuberculosis. (WHO, Geneva, 2010).
Nathanson, C. M. et al. The TDR Tuberculosis Specimen Bank: a resource for diagnostic test developers. Int. J. Tuberc. Lung Dis.14, 1461–1467 (2010). PubMed Google Scholar