Emerging patterns of marine nitrogen fixation (original) (raw)
References
Dugdale, R. C. & Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr.12, 196–206 (1967). ArticleCAS Google Scholar
Eppley, R. W. & Peterson, B. J. Particulate organic-matter flux and planktonic new production in the deep ocean. Nature282, 677–680 (1979). Article Google Scholar
Longhurst, A. R. & Harrison, W. G. The biological pump – profiles of plankton production and consumption in the upper ocean. Prog. Oceanogr.22, 47–123 (1989). Article Google Scholar
Capone, D. G. et al. Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem. Cycles19, GB2024 (2005). An extensive review of the physiology, ecology and biogeochemistry ofTrichodesmiumspp. in the North Atlantic Ocean. ArticleCAS Google Scholar
Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science276, 1221–1229 (1997). ArticleCAS Google Scholar
Zehr, J. P. & Paerl, H. W. in Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 481–525 (John Wiley & Sons, New Jersey, 2008). Book Google Scholar
Riemann, L., Farnelid, H. & Steward, G. F. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat. Microb. Ecol.61, 235–247 (2010). Article Google Scholar
Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science294, 1534–1537 (2001). ArticleCASPubMed Google Scholar
Breitbarth, E., Oschlies, A. & LaRoche, J. Physiological constraints on the global distribution of Trichodesmium — effect of temperature on diazotrophy. Biogeosciences4, 53–61 (2007). ArticleCAS Google Scholar
Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature412, 635–638 (2001). ArticleCAS Google Scholar
Church, M. J., Bjorkman, K. M., Karl, D. M., Saito, M. A. & Zehr, J. P. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol. Oceanogr.53, 63–77 (2008). ArticleCAS Google Scholar
Langlois, R. J., Hummer, D. & LaRoche, J. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl. Environ. Microbiol.74, 1922–1931 (2008). ArticleCASPubMedPubMed Central Google Scholar
Goebel, N. L. et al. Abundance and distribution of major groups of diazotrophic cyanobacteria and their potential contribution to N2 fixation in the tropical Atlantic Ocean. Environ. Microbiol.12, 3272–3289 (2010). ArticleCASPubMed Google Scholar
Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature430, 1027–1031 (2004). ArticleCASPubMed Google Scholar
Webb, E. A., Ehrenreich, I. M., Brown, S. L., Valois, F. W. & Waterbury, J. B. Phenotypic and genotypic characterization of multiple strains of the diazotrophic cyanobacterium, Crocosphaera watsonii, isolated from the open ocean. Environ. Microbiol.11, 338–348 (2009). ArticleCASPubMed Google Scholar
Zehr, J. P., Bench, S. R., Mondragon, E. A., McCarren, J. & DeLong, E. F. Low genomic diversity in tropical oceanic N2-fixing cyanobacteria. Proc. Natl Acad. Sci. USA104, 17807–17812 (2007). ArticleCASPubMedPubMed Central Google Scholar
Moisander, P. H. et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science327, 1512–1514 (2010). ArticleCASPubMed Google Scholar
Tripp, H. J. et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature464, 90–94 (2010). An excellent paper describing the genome of an important uncultured cyanobacterium, which was assembled from sorted environmental samples, and detailing its novel metabolism. ArticleCASPubMed Google Scholar
Zehr, J. P. et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic Photosystem II. Science322, 1110–1112 (2008). ArticleCASPubMed Google Scholar
Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P. & Johnson, K. S. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr.52, 1317–1327 (2007). ArticleCAS Google Scholar
Lehtimaki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic sea cyanobacteria. Appl. Environ. Microbiol.63, 1647–1656 (1997). CASPubMedPubMed Central Google Scholar
Laamanen, M., Kuosa, H. & Maximum, S. Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena. Boreal Environ. Res.10, 19–30 (2005). Google Scholar
Foster, R. A. & Zehr, J. P. Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ. Microbiol.8, 1913–1925 (2006). ArticleCASPubMed Google Scholar
Bar Zeev, E. et al. Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea. ISME J.2, 911–923 (2008). ArticleCAS Google Scholar
Carpenter, E. J. et al. Extensive bloom of a N2 fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser.185, 273–283 (1999). ArticleCAS Google Scholar
Venrick, E. L. Distribution and significance of Richelia intracellularis Schmidt in North Pacific central gyre. Limnol. Oceanogr.19, 437–445 (1974). Article Google Scholar
Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl Acad. Sci. USA105, 10460–10465 (2008). A paper detailing how the Amazon River enhances N2fixation and how the different diazotrophs present affect carbon sequestration in the area. ArticleCASPubMedPubMed Central Google Scholar
Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science281, 200–206 (1998). ArticleCASPubMed Google Scholar
Kustka, A. B. et al. Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol. Oceanogr.48, 1869–1884 (2003). ArticleCAS Google Scholar
Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M. & Falkowski, P. G. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr.46, 1249–1260 (2001). ArticleCAS Google Scholar
Bergquist, B. A. & Boyle, E. A. Dissolved iron in the tropical and subtropical Atlantic Ocean. Global Biogeochem. Cycles20, GB1015 (2006). ArticleCAS Google Scholar
Blain, S., Bonnet, S. & Guieu, C. Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific. Biogeosciences5, 269–280 (2008). ArticleCAS Google Scholar
Boyle, E. A., Bergquist, B. A., Kayser, R. A. & Mahowald, N. Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochim. Cosmochim. Acta69, 933–952 (2005). ArticleCAS Google Scholar
Wu, J. F., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron in the olgotrophic North Atlantic and North Pacific. Science293, 847–849 (2001). ArticleCASPubMed Google Scholar
Paerl, H. W., Prufertbebout, L. E. & Guo, C. Z. Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp. Appl. Environ. Microbiol.60, 1044–1047 (1994). CASPubMedPubMed Central Google Scholar
Rueter, J. G. Iron stimulation of photosynthesis and nitrogen-fixation in _Anabaena_-7120 and Trichodesmium (Cyanophyceae). J. Phycol.24, 249–254 (1988). ArticleCAS Google Scholar
Chappell, P. D. & Webb, E. A. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol.12, 13–27 (2010). ArticleCASPubMed Google Scholar
Kupper, H. et al. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol.179, 784–798 (2008). ArticlePubMed Google Scholar
Shi, T., Sun, Y. & Falkowski, P. G. Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Trichodesmium erythraeum IMS101. Environ. Microbiol.9, 2945–2956 (2007). ArticleCASPubMed Google Scholar
Fu, F. X. et al. Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol. Oceanogr.53, 2472–2484 (2008). ArticleCAS Google Scholar
Saito, M. A. et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl Acad. Sci. USA108, 2184–2189 (2011). ArticleCASPubMedPubMed Central Google Scholar
Paczuska, L. & Kosakowska, A. Is iron a limiting factor of Nodularia spumigena blooms? Oceanologia45, 679–692 (2003). Google Scholar
Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature458, 69–72 (2009). ArticleCASPubMed Google Scholar
Fu, F. X., Zhang, Y. H., Bell, P. R. F. & Hutchins, D. A. Phosphate uptake and growth kinetics of Trichodesmium (Cyanobacteria) isolates from the North Atlantic Ocean and the Great Barrier Reef, Australia. J. Phycol.41, 62–73 (2005). ArticleCAS Google Scholar
Mulholland, M. R., Floge, S., Carpenter, E. J. & Capone, D. G. Phosphorus dynamics in cultures and natural populations of Trichodesmium spp. Mar. Ecol. Prog. Ser.239, 45–55 (2002). ArticleCAS Google Scholar
Krauk, J. M., Villareal, T. A., Sohm, J. A., Montoya, J. P. & Capone, D. G. Plasticity of N: P ratios in laboratory and field populations of Trichodesmium spp. Aquat. Microb. Ecol.42, 243–253 (2006). Article Google Scholar
White, A. E., Spitz, Y. H., Karl, D. M. & Letelier, R. M. Flexible elemental stoichiometry in Trichodesmium spp. and its ecological implications. Limnol. Oceanogr.51, 1777–1790 (2006). ArticleCAS Google Scholar
Orchard, E. D., Webb, E. A. & Dyhrman, S. T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ. Microbiol.11, 2400–2411 (2009). ArticleCASPubMed Google Scholar
Dyhrman, S. T. et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature439, 68–71 (2006). ArticleCASPubMed Google Scholar
Beversdorf, L. J., White, A. E., Bjorkman, K. M., Letelier, R. M. & Karl, D. M. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnol. Oceanogr.55, 1768–1778 (2010). ArticleCAS Google Scholar
Dyhrman, S. T. & Haley, S. T. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl. Environ. Microbiol.72, 1452–1458 (2006). ArticleCASPubMedPubMed Central Google Scholar
Degerholm, J., Gundersen, K., Bergman, B. & Soderback, E. Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp and Aphanizomenon sp. FEMS Microbiol. Ecol.58, 323–332 (2006). ArticleCASPubMed Google Scholar
Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature429, 292–294 (2004). ArticleCASPubMed Google Scholar
Moore, C. M. et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geosci.2, 867–871 (2009). An excellent paper synthesizing new data with that available from databases to detail the mechanisms that control N2fixation in the Atlantic Ocean. ArticleCAS Google Scholar
Cavender-Bares, K. K., Karl, D. M. & Chisholm, S. W. Nutrient gradients in the western North Atlantic Ocean: relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap.48, 2373–2395 (2001). ArticleCAS Google Scholar
Wu, J. F., Sunda, W., Boyle, E. A. & Karl, D. M. Phosphate depletion in the western North Atlantic Ocean. Science289, 759–762 (2000). ArticleCASPubMed Google Scholar
Sohm, J. A., Mahaffey, C. & Capone, D. G. Assessment of relative phosphorus limitation of Trichodesmium spp. in the North Pacific, North Atlantic, and the north coast of Australia. Limnol. Oceanogr.53, 2495–2502 (2008). ArticleCAS Google Scholar
Webb, E. A., Jakuba, R. W., Moffett, J. W. & Dyhrman, S. T. Molecular assessment of phosphorus and iron physiology in Trichodesmium populations from the western Central and western South Atlantic. Limnol. Oceanogr.52, 2221–2232 (2007). ArticleCAS Google Scholar
Sanudo-Wilhelmy, S. A. et al. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature411, 66–69 (2001). ArticleCASPubMed Google Scholar
Sohm, J. A. & Capone, D. G. Zonal differences in phosphorus pools, turnover and deficiency across the tropical North Atlantic Ocean. Global Biogeochem. Cycles24, GB2008 (2010). ArticleCAS Google Scholar
Brown, M. T., Landing, W. M. & Measures, C. I. Dissolved and particulate Fe in the western and central North Pacific: results from the 2002 IOC cruise. Geochemistry Geophysics Geosystems6, Q10001 (2005). Google Scholar
Mahowald, N. M. et al. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles19, GB4025 (2005). Google Scholar
Grabowski, M. N. W., Church, M. J. & Karl, D. M. Nitrogen fixation rates and controls at Stn ALOHA. Aquat. Microb. Ecol.52, 175–183 (2008). Article Google Scholar
Kitajima, S., Furuya, K., Hashihama, F., Takeda, S. & Kanda, J. Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnol. Oceanogr.54, 537–547 (2009). ArticleCAS Google Scholar
Karl, D. M., Bidigare, R. R. & Letelier, R. M. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep Sea Res. Part II Top. Stud. Oceanogr.48, 1449–1470 (2001). Article Google Scholar
Hynes, A. M., Chappell, P. D., Dyhrman, S. T., Doney, S. C. & Webb, E. A. Cross-basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium. Limnol. Oceanogr.54, 1438–1448 (2009). ArticleCAS Google Scholar
Van Mooy, B. A. S. & Devol, A. H. Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnol. Oceanogr.53, 78–88 (2008). ArticleCAS Google Scholar
Moutin, T. et al. Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences5, 95–109 (2008). ArticleCAS Google Scholar
Raimbault, P. & Garcia, N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the South Pacific Ocean: impact on new and export production estimates. Biogeosciences5, 323–338 (2008). ArticleCAS Google Scholar
Stolte, W. et al. Stimulation of nitrogen-fixing cyanobacteria in a Baltic Sea plankton community by land-derived organic matter or iron addition. Mar. Ecol. Prog. Ser.327, 71–82 (2006). ArticleCAS Google Scholar
Lilover, M. J. & Stips, A. The variability of parameters controlling the cyanobacteria bloom biomass in the Baltic Sea. J. Mar. Sys.74, S108–S115 (2008). Article Google Scholar
Moisander, P. H., Paerl, H. W., Dyble, J. & Sivonen, K. Phosphorus limitation and diel control of nitrogen-fixing cyanobacteria in the Baltic Sea. Mar. Ecol. Prog. Ser.345, 41–50 (2007). ArticleCAS Google Scholar
Nausch, M., Nausch, G. & Wasmund, N. Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea. Mar. Ecol. Prog. Ser.266, 15–25 (2004). ArticleCAS Google Scholar
Lips, I. & Lips, U. Abiotic factors influencing cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Hydrobiologia614, 133–140 (2008). Article Google Scholar
Nausch, M., Nausch, G., Wasmund, N. & Nagel, K. Phosphorus pool variations and their relation to cyanobacteria development in the Baltic Sea: a three-year study. J. Mar. Sys.71, 99–111 (2008). Article Google Scholar
Walve, J. & Larsson, U. Blooms of Baltic Sea Aphanizomenon sp (cyanobacteria) collapse after internal phosphorus depletion. Aquat. Microb. Ecol.49, 57–69 (2007). Article Google Scholar
Moisander, P. H., Steppe, T. F., Hall, N. S., Kuparinen, J. & Paerl, H. W. Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms. Mar. Ecol. Prog. Ser.262, 81–95 (2003). Article Google Scholar
Thingstad, T. F. et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science309, 1068–1071 (2005). ArticleCASPubMed Google Scholar
Krom, M. D., Kress, N., Brenner, S. & Gordon, L. I. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr.36, 424–432 (1991). ArticleCAS Google Scholar
Man-Aharonovich, D., Kress, N., Bar Zeev, E., Berman-Frank, I. & Beja, O. Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environ. Microbiol.9, 2354–2363 (2007). ArticleCASPubMed Google Scholar
Le Moal, M. & Biegala, I. C. Diazotrophic unicellular cyanobacteria in the northwestern Mediterranean Sea: a seasonal cycle. Limnol. Oceanogr.54, 845–855 (2009). ArticleCAS Google Scholar
Ibello, V., Cantoni, C., Cozzi, S. & Civitarese, G. First basin-wide experimental results on N2 fixation in the open Mediterranean Sea. Geophys. Res. Lett.37, L03608 (2010). ArticleCAS Google Scholar
Krom, M. D., Emeis, K. C. & Van Cappellen, P. Why is the Eastern Mediterranean phosphorus limited? Prog. Oceanogr.85, 236–244 (2010). Article Google Scholar
Mulholland, M. R. & Capone, D. G. in Indian Ocean Biogeochemical Processes and Ecological Variability (eds. Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H. & Smith, S. L.) 167–186 (American Geophysical Union, Washington D. C., 2009). Book Google Scholar
Morrison, J. M. et al. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea process study. Deep Sea Res. Part II Top. Stud. Oceanogr.45, 2053–2101 (1998). ArticleCAS Google Scholar
Capone, D. G. et al. An extensive bloom of the N2 fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser.172, 281–292 (1998). Article Google Scholar
Foster, R. A., Paytan, A. & Zehr, J. P. Seasonality of N2 fixation and nifH gene diversity in the Gulf of Aqaba (Red Sea). Limnol. Oceanogr.54, 219–233 (2009). ArticleCAS Google Scholar
Carpenter, E. J., Subramaniam, A. & Capone, D. G. Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean. Deep Sea Res. Part I Oceanogr. Res. Pap.51, 173–203 (2004). ArticleCAS Google Scholar
Sohm, J. A., Subramaniam, A., Gunderson, T., Carpenter, E. J. & Capone, D. G. Nitrogen fixation by Trichodesmium spp. and unicellular diazotrophs in the North Pacific subtropical gyre. J. Geophys. Res.Biogeosci. 29 Mar 2011 (doi:10.1029/2010JG001513).
Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O. & Capone, D. G. Nitrogen fixation in the western equatorial Pacific: rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance. Global Biogeochem. Cycles23, GB3012 (2009). ArticleCAS Google Scholar
Foster, R. A. et al. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical north Atlantic Ocean. Limnol. Oceanogr.52, 2517–2532 (2007). Article Google Scholar
Foster, R. A., Subramaniam, A. & Zehr, J. P. Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic. Environ. Microbiol.11, 741–750 (2009). ArticleCASPubMedPubMed Central Google Scholar
O'Neil, J. M. The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. J. Plankton Res.20, 43–59 (1998). Article Google Scholar
Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat. Microb. Ecol.37, 85–94 (2004). Article Google Scholar
Bordeleau, L. M. & Prevost, D. Nodulation and nitrogen fixation in extreme environments. Plant Soil161, 115–125 (1994). ArticleCAS Google Scholar
Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol.11, 1632–1645 (2009). An intriguing paper presenting a hypothesis to explain why free-living heterocystous cyanobacteria are found in cold waters and non-heterocystous filamentous cyanobacteria are found in warm waters. ArticleCASPubMed Google Scholar
Holl, C. M., Waite, A. M., Pesant, S., Thompson, P. A. & Montoya, J. P. Unicellular diazotrophy as a source of nitrogen to Leeuwin Current coastal eddies. Deep Sea Res. Part II Top. Stud. Oceanogr.54, 1045–1054 (2007). Article Google Scholar
Rees, A. P., Gilbert, J. A. & Kelly-Gerreyn, B. A. Nitrogen fixation in the western English Channel (NE Atlantic Ocean). Mar. Ecol. Prog. Ser.374, 7–12 (2009). ArticleCAS Google Scholar
Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J. & Riebesell, U. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochem. Cycles21, GB2028 (2007). ArticleCAS Google Scholar
Hutchins, D. A. et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr.52, 1293–1304 (2007). ArticleCAS Google Scholar
Levitan, O. et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob. Change Biol.13, 531–538 (2007). Article Google Scholar
Levitan, O. et al. Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations. Environ. Microbiol.12, 1899–1912 (2010). ArticleCASPubMed Google Scholar
Kranz, S. A. et al. Combined effects of CO2 and light on the N2 fixing Cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol.154, 334–345 (2010). ArticleCASPubMedPubMed Central Google Scholar
Czerny, J., Ramos, J. B. E. & Riebesell, U. Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences6, 1865–1875 (2009). ArticleCAS Google Scholar
Ramos, J. L., Madueno, F. & Guerrero, M. G. Regulation of nitrogenase levels in Anabaena Sp ATCC 3047 and other filamentous cyanobacteria. Arch. Microbiol.141, 105–111 (1985). ArticleCAS Google Scholar
Martin-Nieto, J., Herrero, A. & Flores, E. Control of nitrogenase mrna levels by products of nitrate assimilation in the cyanobacterium Anabaena sp. strain PCC-7120. Plant Physiol.97, 825–828 (1991). ArticleCASPubMedPubMed Central Google Scholar
Sanz-Alferez, S. & Del Campo, F. F. Relationship between nitrogen-fixation and nitrate metabolism in the Nodularia strains M1 and M2. Planta194, 339–345 (1994). ArticleCAS Google Scholar
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature445, 163–167 (2007). An exciting modelling effort presenting a new hypothesis on the location of the greatest N2fixation in the ocean, suggesting that N2fixation and denitrification are closely spatially coupled. ArticleCASPubMed Google Scholar
Capone, D. G., Oneil, J. M., Zehr, J. & Carpenter, E. J. Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium-thiebautii. Appl. Environ. Microbiol.56, 3532–3536 (1990). CASPubMedPubMed Central Google Scholar
Fu, F. X. & Bell, P. R. F. Factors affecting N2 fixation by the cyanobacterium Trichodesmium sp GBR-TRLI101. FEMS Microbiol. Ecol.45, 203–209 (2003). ArticleCASPubMed Google Scholar
Mulholland, M. R., Ohki, K. & Capone, D. G. Nutrient controls on nitrogen uptake and metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria). J. Phycol.37, 1001–1009 (2001). ArticleCAS Google Scholar
Holl, C. M. & Montoya, J. P. Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotroph Trichodesmium (Cyanobacteria). J. Phycol.41, 1178–1183 (2005). ArticleCAS Google Scholar
Davis, C. S. & McGillicuddy, D. J. Transatlantic abundance of the N2 fixing colonial cyanobacterium Trichodesmium. Science312, 1517–1520 (2006). ArticleCASPubMed Google Scholar
Fong, A. A. et al. Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. ISME J.2, 663–676 (2008). ArticleCASPubMed Google Scholar
Church, M. J. et al. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem. Cycles23, GB2020 (2009). ArticleCAS Google Scholar
Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M. & Zehr, J. P. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol.71, 5362–5370 (2005). ArticleCASPubMedPubMed Central Google Scholar
Moisander, P. H., Beinart, R. A., Voss, M. & Zehr, J. P. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J.2, 954–967 (2008). ArticleCASPubMed Google Scholar
Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles18, GB4028 (2004). A modelling study assessing nutrient limitation of different phytoplankton functional groups in the upper ocean. ArticleCAS Google Scholar
Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science320, 893–897 (2008). ArticleCASPubMed Google Scholar
Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci.46, 205–221 (1958). CAS Google Scholar
Capone, D. G. in Nitrogen in the Marine Environment (eds Carpenter, E. J. & Capone, D. G.) 105–137 (Springer, New York, 1983). Book Google Scholar
Howarth, R. W., Marino, R., Lane, J. & Cole, J. J. Nitrogen-fixation in fresh-water, estuarine, and marine ecosystems.1. Rates and importance. Limnol. Oceanogr.33, 669–687 (1988). CAS Google Scholar
Fulweiler, R. W., Nixon, S. W., Buckley, B. A. & Granger, S. L. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature448, 180–182 (2007). ArticleCASPubMed Google Scholar
Bertics, V. J. et al. Burrowing deeper into benthic nitrogen cycling: the impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Mar. Ecol. Prog. Ser.409, 1–15 (2010). ArticleCAS Google Scholar
Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science326, 422–426 (2009). ArticleCASPubMed Google Scholar
Mehta, M. P. & Baross, J. A. Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science314, 1783–1786 (2006). ArticleCASPubMed Google Scholar
Severin, I. & Stal, L. J. NifH expression by five groups of phototrophs compared with nitrogenase activity in coastal microbial mats. FEMS Microbiol. Ecol.73, 55–67 (2010). CASPubMed Google Scholar
Moffett, J. W., Goeffert, T. J. & Naqvi, S. W. A. Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap.54, 1341–1349 (2007). Article Google Scholar
Bonnet, S. & Guieu, C. Atmospheric forcing on the annual iron cycle in the western Mediterranean Sea: a 1-year survey. J. Geophys. Res.111, C09010 (2006). ArticleCAS Google Scholar
Breitbarth, E. et al. Dissolved iron (II) in the Baltic Sea surface water and implications for cyanobacterial bloom development. Biogeosciences6, 2397–2420 (2009). ArticleCAS Google Scholar
Karl, D. M. et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res. Part II Top. Stud. Oceanogr.48, 1529–1566 (2001). ArticleCAS Google Scholar
Dore, J. E., Brum, J. R., Tupas, L. M. & Karl, D. M. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnol. Oceanogr.47, 1595–1607 (2002). ArticleCAS Google Scholar
Wasmund, N., Voss, M. & Lochte, K. Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar. Ecol. Prog. Ser.214, 1–14 (2001). ArticleCAS Google Scholar
Tanaka, T., Rassoulzadegan, F. & Thingstad, T. F. Orthophosphate uptake by heterotrophic bacteria, cyanobacteria, and autotrophic nanoflagellates in Villefranche Bay, northwestern Mediterranean: vertical, seasonal, and short-term variations of the competitive relationship for phosphorus. Limnol. Oceanogr.49, 1063–1072 (2004). ArticleCAS Google Scholar