Schiano, T. D. Treatment options for hepatic encephalopathy. Pharmacotherapy30, S16–S21 (2010). Article Google Scholar
Wu, J. C. Psychological co-morbidity in functional gastrointestinal disorders: epidemiology, mechanisms and management. J. Neurogastroenterol. Motil.18, 13–18 (2012). ArticleCASPubMed CentralPubMed Google Scholar
Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nature Rev. Neurosci.12, 453–466 (2011). ArticleCAS Google Scholar
Tracey, K. J. Reflex control of immunity. Nature Rev. Immunol.9, 418–428 (2009). ArticleCAS Google Scholar
Mawdsley, J. E. & Rampton, D. S. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut54, 1481–1491 (2005). ArticleCASPubMed CentralPubMed Google Scholar
DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nature Rev. Gastroenterol. Hepatol.8, 523–531 (2011). Article Google Scholar
Collins, S. M. & Bercik, P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology136, 2003–2014 (2009). ArticlePubMed Google Scholar
Freestone, P. P., Sandrini, S. M., Haigh, R. D. & Lyte, M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol.16, 55–64 (2008). ArticleCASPubMed Google Scholar
Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol.558, 263–275 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil.23, 255–264 (2011). ArticleCASPubMed Google Scholar
Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA108, 3047–3052 (2011). ArticleCASPubMed Central Google Scholar
Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut60, 307–317 (2011). ArticlePubMed Google Scholar
Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science326, 1694–1697 (2009). CASPubMedPubMed Central Google Scholar
Jalanka-Tuovinen, J. et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE6, e23035 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Li, W., Dowd, S. E., Scurlock, B., Acosta-Martinez, V. & Lyte, M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav.96, 557–567 (2009). ArticleCASPubMed Google Scholar
Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology141, 599–609 (2011). ArticleCASPubMed Google Scholar
Salonen, A., de Vos, W. M. & Palva, A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology156, 3205–3215 (2010). ArticleCASPubMed Google Scholar
Abouesh, A., Stone, C. & Hobbs, W. R. Antimicrobial-induced mania (antibiomania): a review of spontaneous reports. J. Clin. Psychopharmacol.22, 71–81 (2002). ArticlePubMed Google Scholar
Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J. & Dinan, T. G. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res.2, 164–174 (2008). Article Google Scholar
Desbonnet, L. et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience170, 1179–1188 (2010). ArticleCASPubMed Google Scholar
Bercik, P. et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology139, 2102–2112 (2010). ArticleCASPubMed Google Scholar
Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA108, 10650–16055 (2011). Article Google Scholar
Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol. Motil.23, 1132–1139 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Kunze, W. A. et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J. Cell. Mol. Med.13, 2261–2270 (2009). ArticlePubMedPubMed Central Google Scholar
Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA106, 3698–3703 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hanstock, T. L., Mallet, P. E. & Clayton, E. H. Increased plasma D-lactic acid associated with impaired memory in rats. Physiol. Behav.101, 653–659 (2010). ArticleCASPubMed Google Scholar
Tana, C. et al. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil.22, 512–519 (2010). CASPubMed Google Scholar
Ledochowski, M. et al. Carbohydrate malabsorption syndromes and early signs of mental depression in females. Dig. Dis. Sci.45, 1255–1259 (2000). ArticleCASPubMed Google Scholar
Myint, A. M. Kynurenines: from the perspective of major psychiatric disorders. FEBS J.279, 1375–1385 (2012). ArticleCASPubMed Google Scholar
Barrett, E. et al. γ-Aminobuyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol.113, 411–417 (2012). ArticleCASPubMed Google Scholar
Lyte, M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays33, 574–581 (2011). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol.4, 478–485 (2004). ArticleCAS Google Scholar
Salzman, N. H. Microbiota–immune system interaction: an uneasy alliance. Curr. Opin. Microbiol.14, 99–105 (2011). ArticlePubMed Google Scholar
Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med.207, 1067–1080 (2010). ArticleCASPubMed CentralPubMed Google Scholar
Lotrich, F. E., El-Gabalawy, H., Guenther, L. C. & Ware, C. F. The role of inflammation in the pathophysiology of depression: different treatments and their effects. J. Rheumatol.88, 48–54 (2011). CAS Google Scholar
O'Mahony, L. et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology128, 541–551 (2005). ArticlePubMed Google Scholar
Honda, K. & Takeda, K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol.2, 187–196 (2009). ArticleCASPubMed Google Scholar
Uribe, A., Alam, M., Johansson, O., Midtvedt, T. & Theodorsson, E. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology107, 1259–1269 (1994). ArticleCASPubMed Google Scholar
Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun.25, 397–407 (2011). ArticleCASPubMed Google Scholar
Lyte, M., Vulchanova, L. & Brown, D. R. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell Tissue Res.2431, 23–32 (2011). Article Google Scholar
Bajaj, J. S. et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol.302, G168–G175 (2012). ArticleCASPubMed Google Scholar
Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA108, 4615–4622 (2011). ArticleCASPubMed Google Scholar
Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature479, 538–541 (2011). ArticleCASPubMed Google Scholar
Finegold, S. M., Downes, J. & Summanen, P. H. Microbiology of regressive autism. Anaerobe18, 260–262 (2012). ArticleCASPubMed Google Scholar
Wang, L. et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl. Environ. Microbiol.77, 6718–6721 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Williams, B. L., Hornig, M., Parekh, T. & Lipkin, W. I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio3, e00261–e00211 (2012). ArticleCASPubMed CentralPubMed Google Scholar
Williams, B. L. et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE6, e24585 (2011). ArticleCASPubMed CentralPubMed Google Scholar
Sandler, R. H. et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol.15, 429–435 (2000). ArticleCASPubMed Google Scholar
MacFabe, D. F. et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain. Res.176, 149–169 (2007). ArticleCASPubMed Google Scholar
Rendeiro, C. P. et al. Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc. Nutr. Soc.71, 246–262 (2012). ArticleCASPubMed Google Scholar
Juárez, I., Gratton, A. & Flores, G. Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following cesarean delivery and birth anoxia. J. Comp. Neurol.507, 1734–1747 (2008). ArticlePubMed Google Scholar
Kim, H. R. et al. Delivery modes and neonatal EEG: spatial pattern analysis. Early Hum. Dev.75, 35–53 (2003). ArticlePubMed Google Scholar