Competition sensing: the social side of bacterial stress responses (original) (raw)
References
Birch, L. C. The meanings of competition. Am. Nat.91, 5–18 (1957). Article Google Scholar
Case, T. J. & Gilpin, M. E. Interference competition and niche theory. Proc. Natl Acad. Sci. USA71, 3073–3077 (1974). ArticleCAS Google Scholar
Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species interactions in a biofilm community. Nature445, 533–536 (2007). ArticleCAS Google Scholar
Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev.33, 206–224 (2009). ArticleCAS Google Scholar
Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science309, 1387–1390 (2005). ArticleCAS Google Scholar
Burns, B. P., Goh, F., Allen, M. & Neilan, B. A. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol.6, 1096–1101 (2004). ArticleCAS Google Scholar
Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol.21, 517–523 (2006). Article Google Scholar
Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol.19, 1283–1293 (2006). ArticleCAS Google Scholar
Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F. & Handelsman, J. Rules of engagement: interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol.62, 375–401 (2008). ArticleCAS Google Scholar
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev. Microbiol.8, 15–25 (2009). Article Google Scholar
Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol.22, 1845–1850 (2012). ArticleCAS Google Scholar
Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl Acad. Sci. USA104, 876–881 (2007). ArticleCAS Google Scholar
Nadell, C. D. & Bassler, B. L. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc. Natl Acad. Sci. USA108, 14181–14185 (2011). ArticleCAS Google Scholar
Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature418, 171–174 (2002). ArticleCAS Google Scholar
D'Costa, V. M. et al. Antibiotic resistance is ancient. Nature477, 457–461 (2011). ArticleCAS Google Scholar
Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol.176, 269–275 (1994). ArticleCAS Google Scholar
Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. B.362, 1241–1249 (2007). ArticleCAS Google Scholar
Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol.21, 319–346 (2005). ArticleCAS Google Scholar
Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol.4, 249–258 (2006). ArticleCAS Google Scholar
Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol.5, 230–239 (2007). ArticleCAS Google Scholar
Storz, G. & Hengge, R. (eds) Bacterial Stress Responses 2nd edn (American Society for Microbiology Press, 2011). Google Scholar
Poole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol.20, 227–234 (2012). ArticleCAS Google Scholar
Bagge, N. et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob. Agents Chemother.48, 1175–1187 (2004). ArticleCAS Google Scholar
Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nature Chem. Biol.2, 71–78 (2006). ArticleCAS Google Scholar
Chavan, M. & Riley, M. in Bacteriocins: Ecology and Evolution (eds Riley, M. A. & Chavan, M. A.) 19–43 (Springer, 2007). Book Google Scholar
Staron´, A. et al. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. Mol. Microbiol.74, 557–581 (2009). Article Google Scholar
Brazas, M. D. & Hancock, R. E. W. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.49, 3222–3227 (2005). ArticleCAS Google Scholar
Majeed, H., Gillor, O., Kerr, B. & Riley, M. A. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J.5, 71–81 (2010). Article Google Scholar
Cao, M. et al. Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J. Mol. Biol.316, 443–457 (2002). ArticleCAS Google Scholar
Walker, D. et al. Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity. J. Bacteriol.186, 866–869 (2004). ArticleCAS Google Scholar
Cavard, D. Effects of temperature and of heat shock on the expression and action of the colicin A lysis protein. J. Bacteriol.177, 5189–5192 (1995). ArticleCAS Google Scholar
Wood, J. in Bacterial Stress Responses 2nd edn (eds Storz, G. & Hengge, R.) 133–156 (American Society for Microbiology Press, 2011). Google Scholar
Liras, P., Gomez-Escribano, J. P. & Santamarta, I. Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J. Ind. Microbiol. Biotechnol.35, 667–676 (2008). ArticleCAS Google Scholar
Sanchez, S. et al. Carbon source regulation of antibiotic production. J. Antibiot.63, 442–459 (2010). ArticleCAS Google Scholar
Jensen, V. et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J. Bacteriol.188, 8601–8606 (2006). ArticleCAS Google Scholar
Xavier, J., Kim, W. & Foster, K. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol.79, 166–179 (2011). ArticleCAS Google Scholar
Perkins, T. J. & Swain, P. S. Strategies for cellular decision-making. Mol. Syst. Biol.5, 326 (2009). Article Google Scholar
Gardner, A. Adaptation as organism design. Biol. Lett.5, 861–864 (2009). Article Google Scholar
Hindré, T., Pennec, J. P., Haras, D. & Dufour, A. Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol. Lett.231, 291–298 (2004). Article Google Scholar
Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA109, 8259–8263 (2012). ArticleCAS Google Scholar
Hayes, C. S., Aoki, S. K. & Low, D. A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet.44, 71–90 (2010). ArticleCAS Google Scholar
Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. Genetic determinants of self identity and social recognition in bacteria. Science321, 256–259 (2008). ArticleCAS Google Scholar
Garbeva, P., Silby, M. W., Raaijmakers, J. M., Levy, S. B. & de Boer, W. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J.5, 973–985 (2011). ArticleCAS Google Scholar
Laub, M. T. in Bacterial Stress Responses 2nd edn (eds Storz, G. & Hengge, R.) 45–58 (American Society for Microbiology Press, 2011). Google Scholar
Korgaonkar, A. K. & Whiteley, M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to _N_-acetylglucosamine and peptidoglycan. J. Bacteriol.193, 909–917 (2011). ArticleCAS Google Scholar
Braun, V., Patzer, S. I. & Hantke, K. Ton-dependent colicins and microcins: modular design and evolution. Biochimie84, 365–380 (2002). ArticleCAS Google Scholar
Maynard Smith, J. & Price, G. R. The logic of animal conflict. Nature246, 15–18 (1973). Article Google Scholar
McGannon, C. M., Fuller, C. A. & Weiss, A. A. Different classes of antibiotics differentially influence Shiga toxin production. Antimicrob. Agents Chemother.54, 3790–3798 (2010). ArticleCAS Google Scholar
Kültz, D. Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J. Exp. Biol.206, 3119–3124 (2003). Article Google Scholar
Chopin, M.-C., Chopin, A. & Bidnenko, E. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol.8, 473–479 (2005). ArticleCAS Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet.11, 181–190 (2010). ArticleCAS Google Scholar
Hayes, F. & Van Melderen, L. Toxins-antitoxins: diversity, evolution and function. Crit. Rev. Biochem. Mol. Biol.46, 386–408 (2011). ArticleCAS Google Scholar
Roth, J. R., Kugelberg, E., Reams, A. B., Kofoid, E. & Andersson, D. I. Origin of mutations under selection: the adaptive mutation controversy. Annu. Rev. Microbiol.60, 477–501 (2006). ArticleCAS Google Scholar
Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature436, 1171–1175 (2005). ArticleCAS Google Scholar
Collet, A. et al. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm. J. Proteome Res.7, 4659–4669 (2008). ArticleCAS Google Scholar
Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science292, 504–507 (2001). ArticleCAS Google Scholar
Davies, J., Spiegelman, G. B. & Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol.9, 445–453 (2006). ArticleCAS Google Scholar
Gillor, O. in Bacteriocins: Ecology and Evolution (eds Riley, M. A. & Chavan, M. A.) 135–145 (Springer, 2007). Book Google Scholar
Gardner, A., West, S. A. & Buckling, A. Bacteriocins, spite and virulence. Proc. Biol. Sci.271, 1529–1535 (2004). ArticleCAS Google Scholar
Frank, S. A. Spatial polymorphism of bacteriocins and other allelopathic traits. Evol. Ecol.8, 369–386 (1994). Article Google Scholar
Wloch-Salamon, D. M., Gerla, D., Hoekstra, R. F. & de Visser, J. A. G. M. Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc. Biol. Sci.275, 535–541 (2008). Article Google Scholar
Gough, J., Karplus, K., Hughey, R. & Chothia, C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol.313, 903–919 (2001). ArticleCAS Google Scholar
Dauga, C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int. J. Syst. Evol. Microbiol.52, 531–547 (2002). ArticleCAS Google Scholar
Labeda, D. et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek101, 73–104 (2012). ArticleCAS Google Scholar
Fontaine, L. et al. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J. Bacteriol.189, 7195–7205 (2007). ArticleCAS Google Scholar
Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem.278, 2169–2176 (2003). ArticleCAS Google Scholar
Jerman, B., Butala, M. & Žgur-Bertok, D. Sublethal concentrations of ciprofloxacin induce bacteriocin synthesis in Escherichia coli. Antimicrob. Agents Chemother.49, 3087–3090 (2005). ArticleCAS Google Scholar