Competition sensing: the social side of bacterial stress responses (original) (raw)

References

  1. Birch, L. C. The meanings of competition. Am. Nat. 91, 5–18 (1957).
    Article Google Scholar
  2. Case, T. J. & Gilpin, M. E. Interference competition and niche theory. Proc. Natl Acad. Sci. USA 71, 3073–3077 (1974).
    Article CAS Google Scholar
  3. Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).
    Article CAS Google Scholar
  4. Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).
    Article CAS Google Scholar
  5. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).
    Article CAS Google Scholar
  6. Burns, B. P., Goh, F., Allen, M. & Neilan, B. A. Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6, 1096–1101 (2004).
    Article CAS Google Scholar
  7. Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21, 517–523 (2006).
    Article Google Scholar
  8. Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol. 19, 1283–1293 (2006).
    Article CAS Google Scholar
  9. Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. F. & Handelsman, J. Rules of engagement: interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol. 62, 375–401 (2008).
    Article CAS Google Scholar
  10. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev. Microbiol. 8, 15–25 (2009).
    Article Google Scholar
  11. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
    Article CAS Google Scholar
  12. Xavier, J. B. & Foster, K. R. Cooperation and conflict in microbial biofilms. Proc. Natl Acad. Sci. USA 104, 876–881 (2007).
    Article CAS Google Scholar
  13. Nadell, C. D. & Bassler, B. L. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc. Natl Acad. Sci. USA 108, 14181–14185 (2011).
    Article CAS Google Scholar
  14. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).
    Article CAS Google Scholar
  15. D'Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).
    Article CAS Google Scholar
  16. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994).
    Article CAS Google Scholar
  17. Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos. Trans. R. Soc. B. 362, 1241–1249 (2007).
    Article CAS Google Scholar
  18. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).
    Article CAS Google Scholar
  19. Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006).
    Article CAS Google Scholar
  20. Hense, B. A. et al. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol. 5, 230–239 (2007).
    Article CAS Google Scholar
  21. Storz, G. & Hengge, R. (eds) Bacterial Stress Responses 2nd edn (American Society for Microbiology Press, 2011).
    Google Scholar
  22. Poole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20, 227–234 (2012).
    Article CAS Google Scholar
  23. Bagge, N. et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob. Agents Chemother. 48, 1175–1187 (2004).
    Article CAS Google Scholar
  24. Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nature Chem. Biol. 2, 71–78 (2006).
    Article CAS Google Scholar
  25. Chavan, M. & Riley, M. in Bacteriocins: Ecology and Evolution (eds Riley, M. A. & Chavan, M. A.) 19–43 (Springer, 2007).
    Book Google Scholar
  26. Staron´, A. et al. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. Mol. Microbiol. 74, 557–581 (2009).
    Article Google Scholar
  27. Brazas, M. D. & Hancock, R. E. W. Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49, 3222–3227 (2005).
    Article CAS Google Scholar
  28. Majeed, H., Gillor, O., Kerr, B. & Riley, M. A. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J. 5, 71–81 (2010).
    Article Google Scholar
  29. Cao, M. et al. Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J. Mol. Biol. 316, 443–457 (2002).
    Article CAS Google Scholar
  30. Walker, D. et al. Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity. J. Bacteriol. 186, 866–869 (2004).
    Article CAS Google Scholar
  31. Cavard, D. Effects of temperature and of heat shock on the expression and action of the colicin A lysis protein. J. Bacteriol. 177, 5189–5192 (1995).
    Article CAS Google Scholar
  32. Wood, J. in Bacterial Stress Responses 2nd edn (eds Storz, G. & Hengge, R.) 133–156 (American Society for Microbiology Press, 2011).
    Google Scholar
  33. Liras, P., Gomez-Escribano, J. P. & Santamarta, I. Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J. Ind. Microbiol. Biotechnol. 35, 667–676 (2008).
    Article CAS Google Scholar
  34. Sanchez, S. et al. Carbon source regulation of antibiotic production. J. Antibiot. 63, 442–459 (2010).
    Article CAS Google Scholar
  35. Jensen, V. et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J. Bacteriol. 188, 8601–8606 (2006).
    Article CAS Google Scholar
  36. Xavier, J., Kim, W. & Foster, K. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol. Microbiol. 79, 166–179 (2011).
    Article CAS Google Scholar
  37. Perkins, T. J. & Swain, P. S. Strategies for cellular decision-making. Mol. Syst. Biol. 5, 326 (2009).
    Article Google Scholar
  38. Gardner, A. Adaptation as organism design. Biol. Lett. 5, 861–864 (2009).
    Article Google Scholar
  39. Hindré, T., Pennec, J. P., Haras, D. & Dufour, A. Regulation of lantibiotic lacticin 481 production at the transcriptional level by acid pH. FEMS Microbiol. Lett. 231, 291–298 (2004).
    Article Google Scholar
  40. Darch, S. E., West, S. A., Winzer, K. & Diggle, S. P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl Acad. Sci. USA 109, 8259–8263 (2012).
    Article CAS Google Scholar
  41. Hayes, C. S., Aoki, S. K. & Low, D. A. Bacterial contact-dependent delivery systems. Annu. Rev. Genet. 44, 71–90 (2010).
    Article CAS Google Scholar
  42. Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. Genetic determinants of self identity and social recognition in bacteria. Science 321, 256–259 (2008).
    Article CAS Google Scholar
  43. Garbeva, P., Silby, M. W., Raaijmakers, J. M., Levy, S. B. & de Boer, W. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J. 5, 973–985 (2011).
    Article CAS Google Scholar
  44. Laub, M. T. in Bacterial Stress Responses 2nd edn (eds Storz, G. & Hengge, R.) 45–58 (American Society for Microbiology Press, 2011).
    Google Scholar
  45. Korgaonkar, A. K. & Whiteley, M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to _N_-acetylglucosamine and peptidoglycan. J. Bacteriol. 193, 909–917 (2011).
    Article CAS Google Scholar
  46. Braun, V., Patzer, S. I. & Hantke, K. Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84, 365–380 (2002).
    Article CAS Google Scholar
  47. Maynard Smith, J. & Price, G. R. The logic of animal conflict. Nature 246, 15–18 (1973).
    Article Google Scholar
  48. McGannon, C. M., Fuller, C. A. & Weiss, A. A. Different classes of antibiotics differentially influence Shiga toxin production. Antimicrob. Agents Chemother. 54, 3790–3798 (2010).
    Article CAS Google Scholar
  49. Kültz, D. Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J. Exp. Biol. 206, 3119–3124 (2003).
    Article Google Scholar
  50. Chopin, M.-C., Chopin, A. & Bidnenko, E. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8, 473–479 (2005).
    Article CAS Google Scholar
  51. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11, 181–190 (2010).
    Article CAS Google Scholar
  52. Hayes, F. & Van Melderen, L. Toxins-antitoxins: diversity, evolution and function. Crit. Rev. Biochem. Mol. Biol. 46, 386–408 (2011).
    Article CAS Google Scholar
  53. Roth, J. R., Kugelberg, E., Reams, A. B., Kofoid, E. & Andersson, D. I. Origin of mutations under selection: the adaptive mutation controversy. Annu. Rev. Microbiol. 60, 477–501 (2006).
    Article CAS Google Scholar
  54. Hoffman, L. R. et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 1171–1175 (2005).
    Article CAS Google Scholar
  55. Collet, A. et al. Impact of rpoS deletion on the proteome of Escherichia coli grown planktonically and as biofilm. J. Proteome Res. 7, 4659–4669 (2008).
    Article CAS Google Scholar
  56. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).
    Article CAS Google Scholar
  57. Davies, J., Spiegelman, G. B. & Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9, 445–453 (2006).
    Article CAS Google Scholar
  58. Gillor, O. in Bacteriocins: Ecology and Evolution (eds Riley, M. A. & Chavan, M. A.) 135–145 (Springer, 2007).
    Book Google Scholar
  59. Gardner, A., West, S. A. & Buckling, A. Bacteriocins, spite and virulence. Proc. Biol. Sci. 271, 1529–1535 (2004).
    Article CAS Google Scholar
  60. Frank, S. A. Spatial polymorphism of bacteriocins and other allelopathic traits. Evol. Ecol. 8, 369–386 (1994).
    Article Google Scholar
  61. Wloch-Salamon, D. M., Gerla, D., Hoekstra, R. F. & de Visser, J. A. G. M. Effect of dispersal and nutrient availability on the competitive ability of toxin-producing yeast. Proc. Biol. Sci. 275, 535–541 (2008).
    Article Google Scholar
  62. Gough, J., Karplus, K., Hughey, R. & Chothia, C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313, 903–919 (2001).
    Article CAS Google Scholar
  63. Dauga, C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int. J. Syst. Evol. Microbiol. 52, 531–547 (2002).
    Article CAS Google Scholar
  64. Labeda, D. et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101, 73–104 (2012).
    Article CAS Google Scholar
  65. Fontaine, L. et al. Quorum-sensing regulation of the production of Blp bacteriocins in Streptococcus thermophilus. J. Bacteriol. 189, 7195–7205 (2007).
    Article CAS Google Scholar
  66. Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278, 2169–2176 (2003).
    Article CAS Google Scholar
  67. Jerman, B., Butala, M. & Žgur-Bertok, D. Sublethal concentrations of ciprofloxacin induce bacteriocin synthesis in Escherichia coli. Antimicrob. Agents Chemother. 49, 3087–3090 (2005).
    Article CAS Google Scholar

Download references