Type VI secretion system effectors: poisons with a purpose (original) (raw)
Roesch, L. F. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J.1, 283–290 (2007). CASPubMed Google Scholar
Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host–microbiota interactions in animal models and humans. Genes Dev.27, 701–718 (2013). CASPubMedPubMed Central Google Scholar
Overmann, J. The phototrophic consortium “Chlorochromatium aggregatum” — a model for bacterial heterologous multicellularity. Adv. Exp. Med. Biol.675, 15–29 (2010). PubMed Google Scholar
Baker, B. J. & Banfield, J. F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol.44, 139–152 (2003). CASPubMed Google Scholar
Dekas, A. E., Poretsky, R. S. & Orphan, V. J. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science326, 422–426 (2009). CASPubMed Google Scholar
Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature407, 623–626 (2000). CASPubMed Google Scholar
Strom, S. L. Microbial ecology of ocean biogeochemistry: a community perspective. Science320, 1043–1045 (2008). CASPubMed Google Scholar
Belda-Ferre, P. et al. The oral metagenome in health and disease. ISME J.6, 46–56 (2012). CASPubMed Google Scholar
Nielsen, P. H., Saunders, A. M., Hansen, A. A., Larsen, P. & Nielsen, J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater — a model system in environmental biotechnology. Curr. Opin. Biotechnol.23, 452–459 (2012). CASPubMed Google Scholar
Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe7, 25–37 (2010). This study provides the first evidence that the T6SS can deliver effector proteins between bacterial cells. CASPubMedPubMed Central Google Scholar
Schwarz, S., Hood, R. D. & Mougous, J. D. What is type VI secretion doing in all those bugs? Trends Microbiol.18, 531–537 (2010). CASPubMedPubMed Central Google Scholar
Boyer, F., Fichant, G., Berthod, J., Vandenbrouck, Y. & Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics10, 104 (2009). This paper provides an exhaustive analysis of the distribution and gene content of T6S clusters. PubMedPubMed Central Google Scholar
Shalom, G., Shaw, J. G. & Thomas, M. S. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology153, 2689–2699 (2007). CASPubMed Google Scholar
Schwarz, S. et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog.6, e1001068 (2010). PubMedPubMed Central Google Scholar
Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature475, 343–347 (2011). This paper identifies peptidoglycan within the bacterial cell wall as a target of interbacterial T6SS effector proteins. CASPubMedPubMed Central Google Scholar
English, G. et al. New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol. Microbiol.86, 921–936 (2012). CASPubMedPubMed Central Google Scholar
Dong, T. G., Ho, B. T., Yoder-Himes, D. R. & Mekalanos, J. J. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl Acad. Sci. USA110, 2623–2628 (2013). CASPubMedPubMed Central Google Scholar
Brooks, T. M., Unterweger, D., Bachmann, V., Kostiuk, B. & Pukatzki, S. Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J. Biol. Chem.288, 7618–7625 (2013). CASPubMedPubMed Central Google Scholar
Russell, A. B. et al. A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe11, 538–549 (2012). CASPubMedPubMed Central Google Scholar
Benz, J., Sendlmeier, C., Barends, T. R. & Meinhart, A. Structural insights into the effector-immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS ONE7, e40453 (2012). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. Structure of the type VI effector–immunity complex (Tae4–Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J. Biol. Chem.288, 5928–5939 (2013). CASPubMedPubMed Central Google Scholar
Vollmer, W., Pilsl, H., Hantke, K., Holtje, J. V. & Braun, V. Pesticin displays muramidase activity. J. Bacteriol.179, 1580–1583 (1997). CASPubMedPubMed Central Google Scholar
Browder, H. P., Zygmunt, W. A., Young, J. R. & Tavormina, P. A. Lysostaphin: enzymatic mode of action. Biochem. Biophys. Res. Commun.19, 383–389 (1965). CASPubMed Google Scholar
El Ghachi, M. et al. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J. Biol. Chem.281, 22761–22772 (2006). CASPubMed Google Scholar
Kong, K. F., Schneper, L. & Mathee, K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS118, 1–36 (2010). CASPubMedPubMed Central Google Scholar
Reynolds, P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis.8, 943–950 (1989). CASPubMed Google Scholar
Chou, S. et al. Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep.1, 656–664 (2012). CASPubMedPubMed Central Google Scholar
Ding, J., Wang, W., Feng, H., Zhang, Y. & Wang, D. C. Structural insights into the Pseudomonas aeruginosa type VI virulence effector Tse1 bacteriolysis and self-protection mechanisms. J. Biol. Chem.287, 26911–26920 (2012). CASPubMedPubMed Central Google Scholar
Zhang, H., Gao, Z.-Q., Su, X.-D. & Dong, Y.-H. Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa. FEBS Lett.586, 3193–3199 (2012). CASPubMed Google Scholar
LeRoux, M. et al. Quantitative single-cell characterization of bacterial interactions reveals type VI secretion is a double-edged sword. Proc. Natl Acad. Sci. USA109, 19804–19809 (2012). This was the first study to show that inactivation of T6S can provide resistance to T6S-based attack by neighbouring cells. CASPubMedPubMed Central Google Scholar
Srikannathasan, V. et al. Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr. D Biol. Crystallogr.69, 2468–2482 (2013). CASPubMedPubMed Central Google Scholar
Whitney, J. C. et al. Identification, structure and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector–immunity pair. J. Biol. Chem.288, 26616–26624 (2013). CASPubMedPubMed Central Google Scholar
Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D. & Mekalanos, J. J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl Acad. Sci. USA104, 15508–15513 (2007). CASPubMedPubMed Central Google Scholar
Suarez, G. et al. A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J. Bacteriol.192, 155–168 (2010). CASPubMed Google Scholar
Russell, A. B. et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature496, 508–512 (2013). CASPubMedPubMed Central Google Scholar
Wilderman, P. J., Vasil, A. I., Johnson, Z. & Vasil, M. L. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol. Microbiol.39, 291–303 (2001). CASPubMed Google Scholar
Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev.71, 158–229 (2007). This is a comprehensive review of colicins, which are the best characterized of the bacteriocins. CASPubMedPubMed Central Google Scholar
Zheng, J., Ho, B. & Mekalanos, J. J. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE6, e23876 (2011). CASPubMedPubMed Central Google Scholar
Miyata, S. T., Kitaoka, M., Brooks, T. M., McAuley, S. B. & Pukatzki, S. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect. Immun.79, 2941–2949 (2011). CASPubMedPubMed Central Google Scholar
Miyata, S.T., Unterweger, D., Rudko, S.P. & Pukatzki, S. Dual expression profile of type VI secretion system immunity genes protects pandemic Vibrio cholerae. PLoS Pathog.9, e1003752 (2013). PubMedPubMed Central Google Scholar
Geli, V., Baty, D., Pattus, F. & Lazdunski, C. Topology and function of the integral membrane protein conferring immunity to colicin A. Mol. Microbiol.3, 679–687 (1989). CASPubMed Google Scholar
Poole, S. J. et al. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet.7, e1002217 (2011). CASPubMedPubMed Central Google Scholar
Koskiniemi, S. et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl Acad. Sci. USA110, 7032–7037 (2013). CASPubMedPubMed Central Google Scholar
Wenren, L. M., Sullivan, N. L., Cardarelli, L., Septer, A. N. & Gibbs, K. A. Two independent pathways for self-recognition in Proteus mirabilis are linked by type VI-dependent export. mBio4, e00374–00313 (2013). This is a follow-up study to reference 67. PubMedPubMed Central Google Scholar
Fritsch, M. J. et al. Proteomic identification of novel secreted anti-bacterial toxins of the Serratia marcescens Type VI secretion system. Mol. Cell Proteom.12, 2735–2749 (2013). CAS Google Scholar
MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc. Natl Acad. Sci. USA107, 19520–19524 (2010). CASPubMedPubMed Central Google Scholar
Murdoch, S. L. et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J. Bacteriol.193, 6057–6069 (2011). CASPubMedPubMed Central Google Scholar
Salomon, D., Gonzalez, H., Updegraff, B. L. & Orth, K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS ONE8, e61086 (2013). CASPubMedPubMed Central Google Scholar
Gueguen, E. & Cascales, E. Promoter swapping unveils the role of the Citrobacter rodentium CTS1 type VI secretion system in interbacterial competition. Appl. Environ. Microbiol.79, 32–38 (2013). CASPubMedPubMed Central Google Scholar
Haapalainen, M. et al. Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. J. Bacteriol.194, 4810–4822 (2012). CASPubMedPubMed Central Google Scholar
Carruthers, M. D., Nicholson, P. A., Tracy, E. N. & Munson, R. S. Jr. Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS ONE8, e59388 (2013). CASPubMedPubMed Central Google Scholar
Dong, C. et al. Structural insights into the inhibition of type VI effector Tae3 by its immunity protein Tai3. Biochem. J.454, 59–68 (2013). CASPubMed Google Scholar
Cornforth, D. M. & Foster, K. R. Competition sensing: the social side of bacterial stress responses. Nature Rev. Microbiol.11, 285–293 (2013). This review discusses an evolutionary rationale for the observed regulatory patterns that are exhibited in the expression of antagonistic bacterial factors. CAS Google Scholar
Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics within and between bacterial cells. Science337, 815 (2012). CASPubMedPubMed Central Google Scholar
Lesic, B., Starkey, M., He, J., Hazan, R. & Rahme, L. G. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology155, 2845–2855 (2009). CASPubMedPubMed Central Google Scholar
Ishikawa, T., Rompikuntal, P. K., Lindmark, B., Milton, D. L. & Wai, S. N. Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS ONE4, e6734 (2009). PubMedPubMed Central Google Scholar
Wu, C. F., Lin, J. S., Shaw, G. C. & Lai, E. M. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog.8, e1002938 (2012). PubMedPubMed Central Google Scholar
Robinson, J. B. et al. Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb. Pathog.47, 243–251 (2009). CASPubMedPubMed Central Google Scholar
Brunet, Y. R., Bernard, C. S., Gavioli, M., Lloubes, R. & Cascales, E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet.7, e1002205 (2011). CASPubMedPubMed Central Google Scholar
Ishikawa, T. et al. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect. Immun.80, 575–584 (2012). CASPubMedPubMed Central Google Scholar
Termine, E. & Michel, G. P. Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. Int. Microbiol.12, 7–12 (2009). CASPubMed Google Scholar
Tilman, D. Resource competition and community structure. Monogr. Popul. Biol.17, 1–296 (1982). CASPubMed Google Scholar
Hawlena, H., Bashey, F., Mendes-Soares, H. & Lively, C. M. Spiteful interactions in a natural population of the bacterium Xenorhabdus bovienii. Am. Nat.175, 374–381 (2010). PubMed Google Scholar
Vos, M. & Velicer, G. J. Social conflict in centimeter-and global-scale populations of the bacterium Myxococcus xanthus. Curr. Biol.19, 1763–1767 (2009). CASPubMedPubMed Central Google Scholar
Chantratita, N. et al. Genetic diversity and microevolution of Burkholderia pseudomallei in the environment. PLoS Negl Trop. Dis.2, e182 (2008). PubMedPubMed Central Google Scholar
Gibbs, K. A., Urbanowski, M. L. & Greenberg, E. P. Genetic determinants of self identity and social recognition in bacteria. Science321, 256–259 (2008). This study identified a single genetic locus that is linked to self-recognition inP. mirabilis, which is an important bacterial model for social behaviour. CASPubMedPubMed Central Google Scholar
Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol.56, 117–137 (2002). CASPubMed Google Scholar
Eldar, A. Social conflict drives the evolutionary divergence of quorum sensing. Proc. Natl Acad. Sci. USA108, 13635–13640 (2011). CASPubMedPubMed Central Google Scholar
Strassmann, J. E., Gilbert, O. M. & Queller, D. C. Kin discrimination and cooperation in microbes. Annu. Rev. Microbiol.65, 349–367 (2011). CASPubMed Google Scholar
Ruhe, Z. C., Low, D. A. & Hayes, C. S. Bacterial contact-dependent growth inhibition. Trends Microbiol.21, 230–237 (2013). CASPubMedPubMed Central Google Scholar
Unterweger, D. et al. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS ONE7, e48320 (2012). CASPubMedPubMed Central Google Scholar
Zhang, W. et al. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch. Microbiol.193, 351–363 (2011). CASPubMed Google Scholar
Bernard, C. S., Brunet, Y. R., Gueguen, E. & Cascales, E. Nooks and crannies in type VI secretion regulation. J. Bacteriol.192, 3850–3860 (2010). CASPubMedPubMed Central Google Scholar
Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol.6, e1000716 (2010). PubMedPubMed Central Google Scholar
Engelberg-Kulka, H. & Glaser, G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol.53, 43–70 (1999). CASPubMed Google Scholar
Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin–antitoxin systems in bacteria and archaea. Annu. Rev. Genet.45, 61–79 (2011). CASPubMed Google Scholar
Li, M. et al. Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog.8, e1002613 (2012). CASPubMedPubMed Central Google Scholar
Van Melderen, L. & Saavedra De Bast, M. Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet.5, e1000437 (2009). PubMedPubMed Central Google Scholar
Yamaguchi, Y. & Inouye, M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nature Rev. Microbiol.9, 779–790 (2011). CAS Google Scholar
Frampton, R., Aggio, R. B., Villas-Boas, S. G., Arcus, V. L. & Cook, G. M. Toxin–antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J. Biol. Chem.287, 5340–5356 (2012). CASPubMed Google Scholar
Hazan, R. & Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genom.272, 227–234 (2004). CAS Google Scholar
Gerdes, K. & Maisonneuve, E. Bacterial persistence and toxin–antitoxin loci. Annu. Rev. Microbiol.66, 103–123 (2012). CASPubMed Google Scholar
Maisonneuve, E., Castro-Camargo, M. & Gerdes, K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell154, 1140–1150 (2013). CASPubMed Google Scholar
Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol.56, 187–209 (2002). CASPubMed Google Scholar
Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol.13, 27–33 (2005). CASPubMed Google Scholar
Blango, M. G. & Mulvey, M. A. Bacterial landlines: contact-dependent signaling in bacterial populations. Curr. Opin. Microbiol.12, 177–181 (2009). CASPubMedPubMed Central Google Scholar
Fagotto, F. & Gumbiner, B. M. Cell contact-dependent signaling. Dev. Biol.180, 445–454 (1996). CASPubMed Google Scholar
Downing, K. J. et al. Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect. Immun.73, 3038–3043 (2005). CASPubMedPubMed Central Google Scholar
Mukamolova, G. V. et al. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol. Microbiol.59, 84–98 (2006). CASPubMed Google Scholar
Mukamolova, G. V. et al. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol.46, 611–621 (2002). CASPubMed Google Scholar
Ravagnani, A., Finan, C. L. & Young, M. A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement. BMC Genomics6, 39 (2005). PubMedPubMed Central Google Scholar
West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol.17, R661–R672 (2007). This paper provides a comprehensive discussion of the possible mechanisms for the evolution of cooperative behaviour. CASPubMed Google Scholar
Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature450, 411–414 (2007). CASPubMed Google Scholar
Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol.67, 241–253 (2008). CASPubMed Google Scholar
Hassan, K. A. et al. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol.12, 899–915 (2010). CASPubMed Google Scholar
Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science312, 1526–1530 (2006). CASPubMedPubMed Central Google Scholar
Enos-Berlage, J. L., Guvener, Z. T., Keenan, C. E. & McCarter, L. L. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol.55, 1160–1182 (2005). CASPubMed Google Scholar
Aschtgen, M. S., Bernard, C. S., De Bentzmann, S., Lloubes, R. & Cascales, E. SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J. Bacteriol.190, 7523–7531 (2008). CASPubMedPubMed Central Google Scholar
Sha, J. et al. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology159, 1120–1135 (2013). CASPubMedPubMed Central Google Scholar
Webb, J. S., Givskov, M. & Kjelleberg, S. Bacterial biofilms: prokaryotic adventures in multicellularity. Curr. Opin. Microbiol.6, 578–585 (2003). CASPubMed Google Scholar
Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science295, 1487 (2002). CASPubMed Google Scholar
Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nature Rev. Microbiol.6, 199–210 (2008). CAS Google Scholar
Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol.83, 669–681 (2012). CASPubMed Google Scholar
Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA104, 7617–7621 (2007). CASPubMedPubMed Central Google Scholar
Dawid, S., Roche, A. M. & Weiser, J. N. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun.75, 443–451 (2007). CASPubMed Google Scholar
Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev.90, 859–904 (2010). CASPubMed Google Scholar
Blondel, C. J., Jimenez, J. C., Contreras, I. & Santiviago, C. A. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics10, 354 (2009). PubMedPubMed Central Google Scholar
Suarez, G. et al. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb. Pathog.44, 344–361 (2008). CASPubMed Google Scholar
Brunet, Y. R., Espinosa, L., Harchouni, S., Mignot, T. & Cascales, E. Imaging type VI secretion-mediated bacterial killing. Cell Rep.3, 36–41 (2013). CASPubMed Google Scholar
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature489, 220–230 (2012). CASPubMedPubMed Central Google Scholar
Percival, S. L., Emanuel, C., Cutting, K. F. & Williams, D. W. Microbiology of the skin and the role of biofilms in infection. Int. Wound J.9, 14–32 (2012). PubMed Google Scholar
O'Hara, C. M., Brenner, F. W. & Miller, J. M. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev.13, 534–546 (2000). CASPubMedPubMed Central Google Scholar
Hejazi, A. & Falkiner, F. R. Serratia marcescens. J. Med. Microbiol.46, 903–912 (1997). CASPubMed Google Scholar
Goddard, A. F. et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc. Natl Acad. Sci. USA109, 13769–13774 (2012). CASPubMedPubMed Central Google Scholar
Cox, M. J. et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS ONE5, e11044 (2010). PubMedPubMed Central Google Scholar
Zhao, J. et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc. Natl Acad. Sci. USA109, 5809–5814 (2012). CASPubMedPubMed Central Google Scholar
Davies, J. C. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr. Respir. Rev.3, 128–134 (2002). PubMed Google Scholar
Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P. & Filloux, A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ. Microbiol.13, 3128–3138 (2011). CASPubMed Google Scholar
Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nature Rev. Microbiol.10, 841–851 (2012). CAS Google Scholar
Ehrlich, G. D., Hu, F. Z., Shen, K., Stoodley, P. & Post, J. C. Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res.437, 20–24 (2005). Google Scholar
Vorholt, J. A. Microbial life in the phyllosphere. Nature Rev. Microbiol.10, 828–840 (2012). CAS Google Scholar
Whipps, J. M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot.52, 487–511 (2001). CASPubMed Google Scholar
Sarris, P. F., Skandalis, N., Kokkinidis, M. & Panopoulos, N. J. In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol. Plant Pathol.11, 795–804 (2010). CASPubMedPubMed Central Google Scholar
De Maayer, P. et al. Comparative genomics of the Type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics12, 576 (2011). CASPubMedPubMed Central Google Scholar
Mattinen, L. et al. Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology154, 2387–2396 (2008). CASPubMed Google Scholar
Varivarn, K., Champa, L. A., Silby, M. W. & Robleto, E. A. Colonization strategies of Pseudomonas fluorescens Pf0-1: activation of soil-specific genes important for diverse and specific environments. BMC Microbiol.13, 92 (2013). CASPubMedPubMed Central Google Scholar
Parsek, M. R. & Singh, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol.57, 677–701 (2003). CASPubMed Google Scholar
Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA106, 4154–4159 (2009). CASPubMedPubMed Central Google Scholar
Kanamaru, S. Structural similarity of tailed phages and pathogenic bacterial secretion systems. Proc. Natl Acad. Sci. USA106, 4067–4068 (2009). CASPubMedPubMed Central Google Scholar
Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature483, 182–186 (2012). This paper reports the visualization of a contractile filamentous structure that is composed of TssB and TssC. CASPubMedPubMed Central Google Scholar
Silverman, J. M., Brunet, Y. R., Cascales, E. & Mougous, J. D. Structure and regulation of the type VI secretion system. Annu. Rev. Microbiol.66, 453–472 (2012). CASPubMedPubMed Central Google Scholar
Cascales, E. & Cambillau, C. Structural biology of type VI secretion systems. Phil. Trans. R. Soc. Lond. B Biol. Sci.367, 1102–1111 (2012). CAS Google Scholar
Hachani, A. et al. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J. Biol. Chem.286, 12317–12327 (2011). CASPubMedPubMed Central Google Scholar
Shneider, M. M. et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature500, 350–353 (2013). CASPubMedPubMed Central Google Scholar
Silverman, J. M. et al. Haemolysin co-regulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell51, 584–593 (2013). CASPubMed Google Scholar
Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA103, 1528–1533 (2006). CASPubMedPubMed Central Google Scholar
Bladergroen, M. R., Badelt, K. & Spaink, H. P. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol. Plant Microbe Interact.16, 53–64 (2003). CASPubMed Google Scholar
Rao, P. S., Yamada, Y., Tan, Y. P. & Leung, K. Y. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol.53, 573–586 (2004). This study reports for the first time that the export of Hcp depends on genes within a conserved cluster. CASPubMed Google Scholar
Zheng, J. & Leung, K. Y. Dissection of a type VI secretion system in Edwardsiella tarda. Mol. Microbiol.66, 1192–1206 (2007). CASPubMed Google Scholar
Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature468, 439–442 (2010). CASPubMedPubMed Central Google Scholar
Nikolakakis, K. et al. The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol. Microbiol.84, 516–529 (2012). CASPubMedPubMed Central Google Scholar
Anderson, M. S., Garcia, E. C. & Cotter, P. A. The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genet.8, e1002877 (2012). CASPubMedPubMed Central Google Scholar
Aoki, S. K. et al. Contact-dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB. Mol. Microbiol.70, 323–340 (2008). CASPubMedPubMed Central Google Scholar
Aoki, S. K. et al. Contact-dependent inhibition of growth in Escherichia coli. Science309, 1245–1248 (2005). This paper reports the discovery of CDI inE. coli. CASPubMed Google Scholar
Webb, J. S. et al. Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS ONE8, e57609 (2013). CASPubMedPubMed Central Google Scholar