Sleytr, U. B. & Beveridge, T. J. Bacterial S-layers. Trends Microbiol.7, 253–260 (1999). CASPubMed Google Scholar
Albers, S. V. & Meyer, B. H. The archaeal cell envelope. Nature Rev. Microbiol.9, 414–426 (2011). CAS Google Scholar
Sleytr, U. B. & Glauert, A. M. Ultrastructure of the cell walls of two closely related Clostridia that possess different regular arrays of surface subunits. J. Bacteriol.126, 869–882 (1976). CASPubMedPubMed Central Google Scholar
Sleytr, U. B. et al. S-layers as a tool kit for nanobiotechnological applications. FEMS Microbiol. Lett.267, 131–144 (2007). CASPubMed Google Scholar
Schuster, B. & Sleytr, U. B. Nanotechnology with S-layer proteins. Methods Mol. Biol.996, 153–175 (2013). CASPubMed Google Scholar
Tu, Z. C., Wassenaar, T. M., Thompson, S. A. & Blaser, M. J. Structure and genotypic plasticity of the Campylobacter fetus sap locus. Mol. Microbiol.48, 685–698 (2003). CASPubMedPubMed Central Google Scholar
Dworkin, J. & Blaser, M. J. Nested DNA inversion as a paradigm of programmed gene rearrangement. Proc. Natl Acad. Sci. USA94, 985–990 (1997). CASPubMedPubMed Central Google Scholar
Tummuru, M. K. & Blaser, M. J. Rearrangement of sapA homologs with conserved and variable regions in Campylobacter fetus. Proc. Natl Acad. Sci. USA90, 7265–7269 (1993). This paper provides the first description of site-specific recombination between SLP genes as a mechanism for antigenic variation. CASPubMedPubMed Central Google Scholar
Dworkin, J., Tummuru, M. K. & Blaser, M. J. Segmental conservation of sapA sequences in type B Campylobacter fetus cells. J. Biol. Chem.270, 15093–15101 (1995). CASPubMed Google Scholar
Eidhin, D., Ryan, A., Doyle, R., Walsh, J. B. & Kelleher, D. Sequence and phylogenetic analysis of the gene for surface layer protein, slpA, from 14 PCR ribotypes of Clostridium difficile. J. Med. Microbiol.55, 69–83 (2006). CAS Google Scholar
Calabi, E. & Fairweather, N. Patterns of sequence conservation in the S-layer proteins and related sequences in Clostridium difficile. J. Bacteriol.184, 3886–3897 (2002). CASPubMedPubMed Central Google Scholar
Dingle, K. E. et al. Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J. Infect. Dis.207, 675–686 (2013). This paper provides a description of SLP cassettes inC. difficile, with genetic evidence of recombinational switching, which is hypothesized to facilitate antigenic variation. CASPubMed Google Scholar
Emerson, J. et al. A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol. Microbiol.74, 541–556 (2009). CASPubMedPubMed Central Google Scholar
Reynolds, C. B., Emerson, J. E., de la Riva, L., Fagan, R. P. & Fairweather, N. F. The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function. PLoS Pathog.7, e1002024 (2011). CASPubMedPubMed Central Google Scholar
Kern, J. W. & Schneewind, O. BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol. Microbiol.68, 504–515 (2008). CASPubMed Google Scholar
Mignot, T., Mesnage, S., Couture-Tosi, E., Mock, M. & Fouet, A. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol. Microbiol.43, 1615–1627 (2002). CASPubMed Google Scholar
Wang, Y. T., Oh, S. Y., Hendrickx, A. P., Lunderberg, J. M. & Schneewind, O. Bacillus cereus G9241 S-layer assembly contributes to the pathogenesis of anthrax-like disease in mice. J. Bacteriol.195, 596–605 (2012). PubMed Google Scholar
Fagan, R. P. et al. A proposed nomenclature for cell wall proteins of Clostridium difficile. J. Med. Microbiol.60, 1225–1228 (2011). CASPubMed Google Scholar
Bruggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA100, 1316–1321 (2003). CASPubMedPubMed Central Google Scholar
Sebaihia, M. et al. Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res.17, 1082–1092 (2007). CASPubMedPubMed Central Google Scholar
Awram, P. & Smit, J. The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J. Bacteriol.180, 3062–3069 (1998). CASPubMedPubMed Central Google Scholar
Kawai, E., Akatsuka, H., Idei, A., Shibatani, T. & Omori, K. Serratia marcescens S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. Mol. Microbiol.27, 941–952 (1998). CASPubMed Google Scholar
Thompson, S. A. et al. Campylobacter fetus surface layer proteins are transported by a type I secretion system. J. Bacteriol.180, 6450–6458 (1998). CASPubMedPubMed Central Google Scholar
Noonan, B. & Trust, T. J. Molecular analysis of an A-protein secretion mutant of Aeromonas salmonicida reveals a surface layer-specific protein secretion pathway. J. Mol. Biol.248, 316–327 (1995). CASPubMed Google Scholar
Thomas, S. R. & Trust, T. J. A specific PulD homolog is required for the secretion of paracrystalline surface array subunits in Aeromonas hydrophila. J. Bacteriol.177, 3932–3939 (1995). CASPubMedPubMed Central Google Scholar
Nguyen-Mau, S. M., Oh, S. Y., Kern, V. J., Missiakas, D. M. & Schneewind, O. Secretion genes as determinants of Bacillus anthracis chain length. J. Bacteriol.194, 3841–3850 (2012). CASPubMedPubMed Central Google Scholar
Fagan, R. P. & Fairweather, N. F. Clostridium difficile has two parallel and essential Sec secretion systems. J. Biol. Chem.286, 27483–27493 (2011). CASPubMedPubMed Central Google Scholar
Braunstein, M., Brown, A. M., Kurtz, S. & Jacobs, W. R. Jr. Two nonredundant SecA homologues function in Mycobacteria. J. Bacteriol.183, 6979–6990 (2001). CASPubMedPubMed Central Google Scholar
Feltcher, M. E. & Braunstein, M. Emerging themes in SecA2-mediated protein export. Nature Rev. Microbiol.10, 779–789 (2012). CAS Google Scholar
Awram, P. & Smit, J. Identification of lipopolysaccharide O antigen synthesis genes required for attachment of the S-layer of Caulobacter crescentus. Microbiology147, 1451–1460 (2001). CASPubMed Google Scholar
Ford, M. J., Nomellini, J. F. & Smit, J. S-layer anchoring and localization of an S-layer-associated protease in Caulobacter crescentus. J. Bacteriol.189, 2226–2237 (2007). CASPubMedPubMed Central Google Scholar
Yang, L. Y., Pei, Z. H., Fujimoto, S. & Blaser, M. J. Reattachment of surface array proteins to Campylobacter fetus cells. J. Bacteriol.174, 1258–1267 (1992). CASPubMedPubMed Central Google Scholar
Dworkin, J., Tummuru, M. K. & Blaser, M. J. A lipopolysaccharide-binding domain of the Campylobacter fetus S-layer protein resides within the conserved N terminus of a family of silent and divergent homologs. J. Bacteriol.177, 1734–1741 (1995). CASPubMedPubMed Central Google Scholar
Ebisu, S. et al. Conserved structures of cell wall protein genes among protein-producing Bacillus brevis strains. J. Bacteriol.172, 1312–1320 (1990). CASPubMedPubMed Central Google Scholar
Bowditch, R. D., Baumann, P. & Yousten, A. A. Cloning and sequencing of the gene encoding a 125-kilodalton surface-layer protein from Bacillus sphaericus 2362 and of a related cryptic gene. J. Bacteriol.171, 4178–4188 (1989). CASPubMedPubMed Central Google Scholar
Faraldo, M. M., de Pedro, M. A. & Berenguer, J. Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli. J. Bacteriol.174, 7458–7462 (1992). CASPubMedPubMed Central Google Scholar
Kuen, B., Sleytr, U. B. & Lubitz, W. Sequence analysis of the sbsA gene encoding the 130-kDa surface-layer protein of Bacillus stearothermophilus strain PV72. Gene145, 115–120 (1994). CASPubMed Google Scholar
Lemaire, M., Miras, I., Gounon, P. & Beguin, P. Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum. Microbiology144, 211–217 (1998). CASPubMed Google Scholar
Mesnage, S. et al. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J.19, 4473–4484 (2000). This paper gives the first description of a cell wall ligand for an SLP — a pyruvylated SCWP as the ligand for non-covalent anchoring ofB. anthracisSLPs that contain SLH domains. CASPubMedPubMed Central Google Scholar
Etienne-Toumelin, I., Sirard, J. C., Duflot, E., Mock, M. & Fouet, A. Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J. Bacteriol.177, 614–620 (1995). CASPubMedPubMed Central Google Scholar
Mesnage, S., Tosi-Couture, E., Mock, M., Gounon, P. & Fouet, A. Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol. Microbiol.23, 1147–1155 (1997). CASPubMed Google Scholar
Kern, J. et al. Structure of the SLH domains from Bacillus anthracis surface array protein. J. Biol. Chem.286, 26042–26049 (2011). CASPubMedPubMed Central Google Scholar
Sara, M. et al. Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and the S-layer-deficient variant T5 in continuous culture and studies of the cell wall composition. J. Bacteriol.178, 2108–2117 (1996). CASPubMedPubMed Central Google Scholar
Jarosch, M., Egelseer, E. M., Mattanovich, D., Sleytr, U. B. & Sara, M. S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli. Microbiology146, 273–281 (2000). CASPubMed Google Scholar
Egelseer, E. M. et al. Characterization of an S-layer glycoprotein produced in the course of S-layer variation of Bacillus stearothermophilus ATCC 12980 and sequencing and cloning of the sbsD gene encoding the protein moiety. Arch. Microbiol.177, 70–80 (2001). CASPubMed Google Scholar
Schaffer, C. et al. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J. Biol. Chem.277, 6230–6239 (2002). CASPubMed Google Scholar
Mader, C., Huber, C., Moll, D., Sleytr, U. B. & Sara, M. Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology. J. Bacteriol.186, 1758–1768 (2004). CASPubMedPubMed Central Google Scholar
Schaffer, C. et al. The diacetamidodideoxyuronic-acid-containing glycan chain of Bacillus stearothermophilus NRS 2004/3a represents the secondary cell-wall polymer of wild-type B. stearothermophilus strains. Microbiology145, 1575–1583 (1999). CASPubMed Google Scholar
Ferner-Ortner, J., Mader, C., Ilk, N., Sleytr, U. B. & Egelseer, E. M. High-affinity interaction between the S-layer protein SbsC and the secondary cell wall polymer of Geobacillus stearothermophilus ATCC 12980 determined by surface plasmon resonance technology. J. Bacteriol.189, 7154–7158 (2007). CASPubMedPubMed Central Google Scholar
Kuroda, A., Rashid, M. H. & Sekiguchi, J. Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J. Gen. Microbiol.138, 1067–1076 (1992). CASPubMed Google Scholar
Kuroda, A. & Sekiguchi, J. Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. J. Gen. Microbiol.136, 2209–2216 (1990). CASPubMed Google Scholar
Bruggemann, H. & Gottschalk, G. Comparative genomics of Clostridia: link between the ecological niche and cell surface properties. Ann. NY Acad. Sci.1125, 73–81 (2008). PubMed Google Scholar
Weidenmaier, C. & Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Rev. Microbiol.6, 276–287 (2008). CAS Google Scholar
Pavkov, T. et al. The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure16, 1226–1237 (2008). CASPubMed Google Scholar
Runzler, D., Huber, C., Moll, D., Kohler, G. & Sara, M. Biophysical characterization of the entire bacterial surface layer protein SbsB and its two distinct functional domains. J Biol Chem,7, 5207–5215 (2003). Google Scholar
Mignot, T. et al. Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure. Environ. Microbiol.3, 493–501 (2001). CASPubMed Google Scholar
Baranova, E. et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature487, 119–122 (2012). This paper provides a high-resolution model of the assembledG. stearothermophilusSbsB S-layer, extrapolated from X-ray crystallography. It also gives a plausible explanation for the calcium-dependence of SLP self-assembly. CASPubMed Google Scholar
Mescher, M. F., Strominger, J. L. & Watson, S. W. Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium. J. Bacteriol.120, 945–954 (1974). CASPubMedPubMed Central Google Scholar
Ristl, R. et al. The S-layer glycome — adding to the sugar coat of bacteria. Int J. Microbiol2011, 127870 (2011). This study provides the first complete description of a pathway for glycosylation of an S-layer protein. PubMed Google Scholar
Messner, P., Steiner, K., Zarschler, K. & Schaffer, C. S-layer nanoglycobiology of bacteria. Carbohydr. Res.343, 1934–1951 (2008). CASPubMedPubMed Central Google Scholar
Abu-Qarn, M., Eichler, J. & Sharon, N. Not just for eukarya anymore: protein glycosylation in bacteria and archaea. Curr. Opin. Struct. Biol.18, 544–550 (2008). CASPubMed Google Scholar
Benz, I. & Schmidt, M. A. Never say never again: protein glycosylation in pathogenic bacteria. Mol. Microbiol.45, 267–276 (2002). CASPubMed Google Scholar
Schaffer, C., Wugeditsch, T., Neuninger, C. & Messner, P. Are S-layer glycoproteins and lipopolysaccharides related? Microb. Drug Resist.2, 17–23 (1996). CASPubMed Google Scholar
Steiner, K. et al. Molecular basis of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus. J. Biol. Chem.283, 21120–21133 (2008). CASPubMedPubMed Central Google Scholar
Zarschler, K., Janesch, B., Zayni, S., Schaffer, C. & Messner, P. Construction of a gene knockout system for application in Paenibacillus alvei CCM 2051T, exemplified by the S-layer glycan biosynthesis initiation enzyme WsfP. Appl. Environ. Microbiol.75, 3077–3085 (2009). CASPubMedPubMed Central Google Scholar
Posch, G. et al. Characterization and scope of S-layer protein O-glycosylation in Tannerella forsythia. J. Biol. Chem.286, 38714–38724 (2011). CASPubMedPubMed Central Google Scholar
Qazi, O. et al. Mass spectrometric analysis of the S-layer proteins from Clostridium difficile demonstrates the absence of glycosylation. J. Mass Spectrom.44, 368–374 (2009). CASPubMed Google Scholar
Beveridge, T. J. et al. Functions of S-layers. FEMS Microbiol. Rev.20, 99–149 (1997). CASPubMed Google Scholar
Sun, Z. et al. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl. Microbiol. Biotechnol.97, 1941–1952 (2013). CASPubMed Google Scholar
Sillanpaa, J. et al. Characterization of the collagen-binding S-layer protein CbsA of Lactobacillus crispatus. J. Bacteriol.182, 6440–6450 (2000). CASPubMedPubMed Central Google Scholar
Toba, T. et al. A collagen-binding S-layer protein in Lactobacillus crispatus. Appl. Environ. Microbiol.61, 2467–2471 (1995). CASPubMedPubMed Central Google Scholar
Ausiello, C. M. et al. Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect.8, 2640–2646 (2006). CASPubMed Google Scholar
Ryan, A. et al. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog7, e1002076 (2011). This study shows that an SLP can function as a ligand for the innate immune response, activating TLR4 and promoting clearance ofC. difficileinfection. CASPubMedPubMed Central Google Scholar
Calabi, E., Calabi, F., Phillips, A. D. & Fairweather, N. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect. Immun.70, 5770–5778 (2002). CASPubMedPubMed Central Google Scholar
Faulds-Pain, A. & Wren, B. W. Improved bacterial mutagenesis by high-frequency allele exchange, demonstrated in Clostridium difficile and Streptococcus suis. Appl. Environ. Microbiol.79, 4768–4771 (2013). CASPubMedPubMed Central Google Scholar
Cartman, S. T., Kelly, M. L., Heeg, D., Heap, J. T. & Minton, N. P. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between tcdC genotype and toxin production. Appl. Environ. Microbiol.78, 4683–4690 (2012). CASPubMedPubMed Central Google Scholar
Heap, J. T. et al. Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res.40, e59 (2012). CASPubMedPubMed Central Google Scholar
Kern, J. & Schneewind, O. BslA, the S-layer adhesin of B. anthracis, is a virulence factor for anthrax pathogenesis. Mol. Microbiol.75, 324–332 (2010). CASPubMed Google Scholar
Tarlovsky, Y. et al. A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC. J. Bacteriol.192, 3503–3511 (2010). CASPubMedPubMed Central Google Scholar
Grogono-Thomas, R., Dworkin, J., Blaser, M. J. & Newell, D. G. Roles of the surface layer proteins of Campylobacter fetus subsp. fetus in ovine abortion. Infect. Immun.68, 1687–1691 (2000). CASPubMedPubMed Central Google Scholar
Garcia, M. M. et al. Protein shift and antigenic variation in the S-layer of Campylobacter fetus subsp. venerealis during bovine infection accompanied by genomic rearrangement of sapA homologs. J. Bacteriol.177, 1976–1980 (1995). CASPubMedPubMed Central Google Scholar
Wang, E., Garcia, M. M., Blake, M. S., Pei, Z. & Blaser, M. J. Shift in S-layer protein expression responsible for antigenic variation in Campylobacter fetus. J. Bacteriol.175, 4979–4984 (1993). CASPubMedPubMed Central Google Scholar
Blaser, M. J. & Pei, Z. Pathogenesis of Campylobacter fetus infections: critical role of high-molecular-weight S-layer proteins in virulence. J. Infect. Dis.167, 372–377 (1993). CASPubMed Google Scholar
Blaser, M. J. et al. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J. Infect. Dis.155, 696–706 (1987). CASPubMed Google Scholar
Blaser, M. J., Smith, P. F., Repine, J. E. & Joiner, K. A. Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J. Clin. Invest.81, 1434–1444 (1988). CASPubMedPubMed Central Google Scholar
Tu, Z. C., Gaudreau, C. & Blaser, M. J. Mechanisms underlying Campylobacter fetus pathogenesis in humans: surface-layer protein variation in relapsing infections. J. Infect. Dis.191, 2082–2089 (2005). CASPubMed Google Scholar
Darveau, R. P. Periodontitis: a polymicrobial disruption of host homeostasis. Nature Rev. Microbiol.8, 481–490 (2010). CAS Google Scholar
Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol25, 134–144 (1998). CASPubMed Google Scholar
Sabet, M., Lee, S. W., Nauman, R. K., Sims, T. & Um, H. S. The surface (S-) layer is a virulence factor of Bacteroides forsythus. Microbiology149, 3617–3627 (2003). CASPubMed Google Scholar
Higuchi, N. et al. Localization of major, high molecular weight proteins in Bacteroides forsythus. Microbiol. Immunol.44, 777–780 (2000). CASPubMed Google Scholar
Sakakibara, J. et al. Loss of adherence ability to human gingival epithelial cells in S-layer protein-deficient mutants of Tannerella forsythensis. Microbiology153, 866–876 (2007). CASPubMed Google Scholar
Lee, S. W. et al. Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia. Gene371, 102–111 (2006). CASPubMed Google Scholar
Honma, K., Inagaki, S., Okuda, K., Kuramitsu, H. K. & Sharma, A. Role of a Tannerella forsythia exopolysaccharide synthesis operon in biofilm development. Microb. Pathog.42, 156–166 (2007). CASPubMed Google Scholar
Pham, T. K. et al. A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia. Proteomics10, 3130–3141 (2010). CASPubMed Google Scholar
Sockett, R. E. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu. Rev. Microbiol.63, 523–539 (2009). CASPubMed Google Scholar
Koval, S. F. & Hynes, S. H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol.173, 2244–2249 (1991). CASPubMedPubMed Central Google Scholar
Sara, M. & Sleytr, U. B. Molecular sieving through S layers of Bacillus stearothermophilus strains. J. Bacteriol.169, 4092–4098 (1987). CASPubMedPubMed Central Google Scholar
Rothfuss, H., Lara, J. C., Schmid, A. K. & Lidstrom, M. E. Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans R1. Microbiology152, 2779–2787 (2006). CASPubMed Google Scholar
Kirby, J. M. et al. Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J. Biol. Chem.284, 34666–34673 (2009). CASPubMedPubMed Central Google Scholar
de la Riva, L., Willing, S. E., Tate, E. W. & Fairweather, N. F. Roles of cysteine proteases Cwp84 and Cwp13 in biogenesis of the cell wall of Clostridium difficile. J. Bacteriol.193, 3276–3285 (2011). CASPubMedPubMed Central Google Scholar
Ahn, J. S., Chandramohan, L., Liou, L. E. & Bayles, K. W. Characterization of CidR-mediated regulation in Bacillus anthracis reveals a previously undetected role of S-layer proteins as murein hydrolases. Mol. Microbiol.62, 1158–1169 (2006). CASPubMed Google Scholar
Anderson, V. J., Kern, J. W., McCool, J. W., Schneewind, O. & Missiakas, D. The SLH-domain protein BslO is a determinant of Bacillus anthracis chain length. Mol. Microbiol.81, 192–205 (2011). CASPubMedPubMed Central Google Scholar
Kern, V. J., Kern, J. W., Theriot, J. A., Schneewind, O. & Missiakas, D. Surface-layer (S-layer) proteins sap and EA1 govern the binding of the S-layer-associated protein BslO at the cell septa of Bacillus anthracis. J. Bacteriol.194, 3833–3840 (2012). CASPubMedPubMed Central Google Scholar
Peltier, J. et al. Clostridium difficile has an original peptidoglycan structure with a high level of _N_-acetylglucosamine deacetylation and mainly 3–3 cross-links. J. Biol. Chem.286, 29053–29062 (2011). CASPubMedPubMed Central Google Scholar
Brahamsha, B. An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Proc. Natl Acad. Sci. USA93, 6504–6509 (1996). CASPubMedPubMed Central Google Scholar
McCarren, J. & Brahamsha, B. SwmB, a 1.12-megadalton protein that is required for nonflagellar swimming motility in Synechococcus. J. Bacteriol.189, 1158–1162 (2007). CASPubMed Google Scholar
McCarren, J. & Brahamsha, B. Swimming motility mutants of marine Synechococcus affected in production and localization of the S-layer protein SwmA. J. Bacteriol.191, 1111–1114 (2009). CASPubMed Google Scholar
Norville, J. E. et al. 7Å projection map of the S-layer protein sbpA obtained with trehalose-embedded monolayer crystals. J. Struct. Biol.160, 313–323 (2007). CASPubMedPubMed Central Google Scholar
Houwink, A. L. A macromolecular mono-layer in the cell wall of Spirillum spec. Biochim. Biophys. Acta10, 360–366 (1953). This paper provides the first description of a paracrystalline layer on a bacterial cell. CASPubMed Google Scholar
Severs, N. J. Freeze-fracture electron microscopy. Nature Protoc.2, 547–576 (2007). CAS Google Scholar
Sleytr, U. B., Messner, P., Pum, D. & Sara, M. Crystalline bacterial cell surface layers (S Layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Ed.38, 1034–1054 (1999). CAS Google Scholar
Lupas, A. et al. Domain structure of the Acetogenium kivui surface-layer revealed by electron crystallography and sequence-analysis. J. Bacteriol.176, 1224–1233 (1994). CASPubMedPubMed Central Google Scholar
Dorobantu, L. S., Goss, G. G. & Burrell, R. E. Atomic force microscopy: a nanoscopic view of microbial cell surfaces. Micron43, 1312–1322 (2012). CASPubMed Google Scholar
Chung, S., Shin, S. H., Bertozzi, C. R. & De Yoreo, J. J. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl Acad. Sci. USA107, 16536–16541 (2010). CASPubMedPubMed Central Google Scholar
Stetefeld, J. et al. Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nature Struct. Biol.7, 772–776 (2000). CASPubMed Google Scholar
Jing, H. et al. Archaeal surface layer proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface proteins. Structure10, 1453–1464 (2002). CASPubMed Google Scholar
Arbing, M. A. et al. Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA109, 11812–11817 (2012). CASPubMedPubMed Central Google Scholar
Fagan, R. P. et al. Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol. Microbiol.71, 1308–1322 (2009). CASPubMed Google Scholar
Punta, M. et al. The Pfam protein families database. Nucleic Acids Res.40, D290–D301 (2012). CASPubMed Google Scholar
Korotkov, K. V., Sandkvist, M. & Hol, W. G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nature Rev. Microbiol.10, 336–351 (2012). CAS Google Scholar