Quivey, R. G., Kuhnert, W. L. & Hahn, K. Genetics of acid adaptation in oral streptococci. Crit. Rev. Oral Biol. Med.12, 301–314 (2001). ArticleCASPubMed Google Scholar
Bhagwat, S. P., Nary, J. & Burne, R. A. Effects of mutating putative two-component systems on biofilm formation by Streptococcus mutans UA159. FEMS Microbiol. Lett.205, 225–230 (2001). ArticleCASPubMed Google Scholar
Jenkinson, H. F. & Demuth, D. R. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol.23, 183–190 (1997). ArticleCASPubMed Google Scholar
Ma, J. K. et al. An investigation into the mechanism of protection by local passive immunization with monoclonal antibodies against Streptococcus mutans. Infect. Immun.58, 3407–3414 (1990). CASPubMedPubMed Central Google Scholar
Lee, S. F. & Boran, T. L. Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect. Immun.71, 676–681 (2003). Describes the use of genetic manipulation in combination with an animal model to show the importance of the cell-surface anchoring of proteins in the ability ofS. mutansto cause caries. ArticleCASPubMedPubMed Central Google Scholar
Kuramitsu, H. K. Virulence factors of mutans streptococci: role of molecular genetics. Crit. Rev. Oral Biol. Med.4, 159–176 (1993). ArticleCASPubMed Google Scholar
Hazlett, K. R. O., Michalek, S. M. & Banas, J. A. Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between the glucosyltransferase B and C genes. Infect. Immun.66, 2180–2185 (1998). CASPubMedPubMed Central Google Scholar
Munro, C., Michalek, S. M. & Macrina, F. L. Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect. Immun.59, 2316–2323 (1991). CASPubMedPubMed Central Google Scholar
Yamashita, Y., Bowen, W. H., Burne, R. A. & Kuramitsu, H. K. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect. Immun.61, 3811–3817 (1993). CASPubMedPubMed Central Google Scholar
Idone, V. et al. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect. Immun.71, 4351–4360 (2003). ArticleCASPubMedPubMed Central Google Scholar
Russell, M., Harrington, D. & Russell, R. Identity of Streptococcus mutans surface protein antigen III and wall-associated protein antigen A. Infect. Immun.63, 733–735 (1995). CASPubMedPubMed Central Google Scholar
Kitten, T., Munro, C. L., Michalek, S. M. & Macrina, F. L. Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect. Immun.68, 4441–4451 (2000). ArticleCASPubMedPubMed Central Google Scholar
Haas, W. & Banas, J. A. Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A. J. Bacteriol.182, 728–733 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sato, Y., Yamamoto, Y. & Kizaki, H. Cloning and sequence analysis of the gbpC gene encoding a novel glucan-binding protein of Streptococcus mutans. Infect. Immun.65, 668–675 (1997). CASPubMedPubMed Central Google Scholar
Holmes, A. R. et al. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol.41, 1395–1408 (2001). ArticleCASPubMed Google Scholar
Dintilhac, A., Alloing, G., Granadel, C. & Claverys, J. P. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol.25, 727–739 (1997). ArticleCASPubMed Google Scholar
Berry, A. M. & Paton, J. C. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect. Immun.64, 5255–5262 (1996). CASPubMedPubMed Central Google Scholar
Marra, A. et al. In vivo characterization of the psa genes from Streptococcus pneumoniae in multiple models of infection. Microbiology148, 1483–1491 (2002). ArticleCASPubMed Google Scholar
Romero-Steiner, S. et al. Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin. Diagn. Lab. Immunol.10, 246–251 (2003). PubMedPubMed Central Google Scholar
Ajdić, D. I. et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl Acad. Sci. USA99, 14434–14439 (2002). Contains a description of theS. mutansgenome and an analysis of metabolic and regulatory aspects revealed by the genomic sequence. ArticleCASPubMedPubMed Central Google Scholar
Schuchat, A. Group B streptococcal disease: from trials and tribulations to triumph and trepidation. Clin. Infect. Dis.33, 751–756 (2001). ArticleCASPubMed Google Scholar
Schuchat, A. Epidemiology of Group B streptococcal disease in the United States: shifting paradigms. Clin. Microbiol. Rev.11, 497–513 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rubens, C. E. et al. Respiratory epithelial cell invasion by group B streptococci. Infect. Immun.60, 5157–5163 (1992). CASPubMedPubMed Central Google Scholar
Gibson, R. L. et al. Group B streptococci invade endothelial cells: type III capsular polysaccharide attenuates invasion. Infect. Immun.61, 478–485 (1993). CASPubMedPubMed Central Google Scholar
Jones, A. L., Knoll, K. M. & Rubens, C. E. Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Mol. Microbiol.37, 1444–1455 (2000). ArticleCASPubMed Google Scholar
Marques, M. B., Kasper, D. L., Pangburn, M. K. & Wessels, M. R. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect. Immun.60, 3986–3993 (1992). CASPubMedPubMed Central Google Scholar
Spellerberg, B. et al. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect. Immun.67, 871–878 (1999). CASPubMedPubMed Central Google Scholar
Li, J. et al. Inactivation of the α C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc. Natl Acad. Sci. USA94, 13251–13256 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schubert, A. et al. A fibrinogen receptor from group B Streptococcus. Mol. Microbiol.46, 557–569 (2002). ArticleCASPubMed Google Scholar
Glaser, P. et al. Genome sequence of Streptococcus agalactiae. Mol. Microbiol.45, 1499–1513 (2002). This paper and reference 147 describe the genome sequence of GBS, giving details of genomic structure, comparative genomics and metabolic insights from the two strains sequenced. ArticleCASPubMed Google Scholar
Chmouryguina, I., Suvorov, A., Ferrieri, P. & Cleary, P. Conservation of the C5a peptidase genes in group A and B streptococci. Infect. Immun.64, 2387–2390 (1996). CASPubMedPubMed Central Google Scholar
Pritzlaff, C. A. et al. Genetic basis for the β-haemolytic/cytolytic activity of group B Streptococcus. Mol. Microbiol.39, 236–248 (2001). ArticleCASPubMed Google Scholar
Nizet, V. et al. Group B streptococcal β-hemolysin expression is associated with injury of lung epithelial cells. Infect. Immun.64, 3818–3826 (1996). CASPubMedPubMed Central Google Scholar
Gibson, R. L., Nizet, V. & Rubens, C. E. Group B streptococcal β-hemolysin promotes injury of lung microvascular endothelial cells. Pediatr. Res.45, 626–634 (1999). ArticleCASPubMed Google Scholar
Nizet, V. et al. Invasion of brain microvascular endothelial cells by group B streptococci. Infect. Immun.65, 5074–5081 (1997). CASPubMedPubMed Central Google Scholar
Ring, A. et al. Group B streptococcal β-hemolysin induces nitric oxide production in murine macrophages. J. Infect. Dis.182, 150–157 (2000). ArticleCASPubMed Google Scholar
Henneke, P. et al. Cellular activation, phagocytosis, and bactericidal activity against Group B Streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J. Immunol.169, 3970–3977 (2002). ArticleCASPubMed Google Scholar
Doran, K. S. et al. Group B streptococcal β-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J. Infect. Dis.185, 196–203 (2002). ArticleCASPubMed Google Scholar
Nizet, V., Gibson, R. L. & Rubens, C. E. The role of group B streptococci β-hemolysin expression in newborn lung injury. Adv. Exp. Med. Biol.418, 627–630 (1997). ArticleCASPubMed Google Scholar
Puliti, M. et al. Severity of group B streptococcal arthritis is correlated with β-hemolysin expression. J. Infect. Dis.182, 824–832 (2000). ArticleCASPubMed Google Scholar
Ring, A. et al. Group B streptococcal β-hemolysin induces mortality and liver injury in experimental sepsis. J. Infect. Dis.185, 1745–1753 (2002). ArticleCASPubMed Google Scholar
Bisno, A. L., Brito, M. O. & Collins, C. M. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis.3, 191–200 (2003). A detailed review of the virulence factors ofS. pyogenes. ArticleCASPubMed Google Scholar
Courtney, H. S., Hasty, D. L. & Dale, J. B. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann. Med.34, 77–87 (2002). ArticleCASPubMed Google Scholar
Hasty, D. L., Ofek, I., Courtney, H. S. & Doyle, R. J. Multiple adhesins of streptococci. Infect. Immun.60, 2147–2152 (1992). CASPubMedPubMed Central Google Scholar
Okada, N., Liszewski, M., Atkinson, J. & Caparon, M. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A Streptococcus. Proc. Natl Acad. Sci. USA92, 2489–2493 (1995). ArticleCASPubMedPubMed Central Google Scholar
Talay, S. R. et al. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect. Immun.60, 3837–3844 (1992). CASPubMedPubMed Central Google Scholar
Hanski, E., Horwitz, P. A. & Caparon, M. G. Expression of protein F, the fibronectin-binding protein of Streptococcus pyogenes JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. Infect. Immun.60, 5119–5125 (1992). CASPubMedPubMed Central Google Scholar
Kreikemeyer, B., Talay, S. R. & Chhatwal, G. S. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol. Microbiol.17, 137–145 (1995). ArticleCASPubMed Google Scholar
Courtney, H., Dale, J. & Hasty, D. Differential effects of the streptococcal fibronectin-binding protein, FBP54, on adhesion of group A streptococci to human buccal cells and HEp-2 tissue culture cells. Infect. Immun.64, 2415–2419 (1996). CASPubMedPubMed Central Google Scholar
Jaffe, J., Natanson-Yaron, S., Caparon, M. G. & Hanski, E. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol.21, 373–384 (1996). ArticleCASPubMed Google Scholar
Rocha, C. L. & Fischetti, V. A. Identification and characterization of a novel fibronectin-binding protein on the surface of Group A streptococci. Infect. Immun.67, 2720–2728 (1999). CASPubMedPubMed Central Google Scholar
Schrager, H. M. et al. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J. Clin. Invest.101, 1708–1716 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cywes, C. & Wessels, M. R. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature414, 648–652 (2001). Describes the role of the hyaluronic acid capsule ofS. pyogenesin the interaction with CD44 on host cells and the importance of the subsequent signalling events ArticleCASPubMed Google Scholar
Horstmann, R. D., Sievertsen, H. J., Knobloch, J. & Fischetti, V. A. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Natl Acad. Sci. USA85, 1657–1661 (1988). ArticleCASPubMedPubMed Central Google Scholar
Johnsson, E. et al. Role of the hypervariable region in streptococcal M proteins: binding of a human complement inhibitor. J. Immunol.161, 4894–4901 (1998). CASPubMed Google Scholar
Whitnack, E. & Beachey, E. H. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J. Exp. Med.162, 1983–1997 (1985). ArticleCASPubMed Google Scholar
Whitnack, E., Dale, J. B. & Beachey, E. H. Common protective antigens of group A streptococcal M proteins masked by fibrinogen. J. Exp. Med.159, 1201–1212 (1984). ArticleCASPubMed Google Scholar
Berge, A., Kihlberg, B. -M., Sjoholm, A. G. & Bjorck, L. Streptococcal protein H forms soluble complement-activating complexes with IgG, but inhibits complement activation by IgG-coated targets. J. Biol. Chem.272, 20774–20781 (1997). ArticleCASPubMed Google Scholar
Collin, M. et al. EndoS and SpeB from Streptococcus pyogenes inhibit immunoglobulin-mediated opsonophagocytosis. Infect. Immun.70, 6646–6651 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cleary, P. P. et al. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect. Immun.60, 5219–5223 (1992). CASPubMedPubMed Central Google Scholar
Dale, J., Washburn, R., Marques, M. & Wessels, M. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun.64, 1495–1501 (1996). CASPubMedPubMed Central Google Scholar
Lei, B. et al. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nature Med.7, 1298–1305 (2001). Shows the importance of Mac in the ability ofS. pyogenesto interfere with complement activation and phagocytosis. A mechanism is proposed for Mac function. ArticleCASPubMed Google Scholar
Zhou, M. J. & Brown, E. J. CR3 (Mac-1, αMβ2, CD11b/CD18) and Fc-γRIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc-γRIII and tyrosine phosphorylation. J. Cell Biol.125, 1407–1416 (1994). ArticleCASPubMed Google Scholar
Åkesson, P., Sjöholm, A. G. & Björck, L. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem.271, 1081–1088 (1996). ArticlePubMed Google Scholar
Fernie-King, B. A. et al. Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology103, 390–398 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fernie-King, B. A., Seilly, D. J., Davies, A. & Lachmann, P. J. Streptococcal inhibitor of complement inhibits two additional components of the mucosal innate immune system: secretory leukocyte proteinase inhibitor and lysozyme. Infect. Immun.70, 4908–4916 (2002). ArticleCASPubMedPubMed Central Google Scholar
Frick, I. -M. et al. SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J. Biol. Chem.278, 16561–16566 (2003). ArticleCASPubMed Google Scholar
Madden, J. C., Ruiz, N. & Caparon, M. Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell104, 143–152.
Limbago, B., Penumalli, V., Weinrick, B. & Scott, J. R. Role of streptolysin O in a mouse model of invasive group A streptococcal disease. Infect. Immun.68, 6384–6390 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fontaine, M. C., Lee, J. J. & Kehoe, M. A. Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo. Infect. Immun.71, 3857–3865 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ofek, I., Zafriri, D., Goldhar, J. & Eisenstein, B. I. Inability of toxin inhibitors to neutralize enhanced toxicity caused by bacteria adherent to tissue culture cells. Infect. Immun.58, 3737–3742 (1990). CASPubMedPubMed Central Google Scholar
Betschel, S. D. et al. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect. Immun.66, 1671–1679 (1998). CASPubMedPubMed Central Google Scholar
Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives. Science248, 1066 (1990). ArticleCASPubMed Google Scholar
Christner, R. et al. Identification of key gene products required for acquisition of plasmin-like enzymatic activity by group A streptococci. J. Infect. Dis.175, 1115–1120 (1997). ArticleCASPubMed Google Scholar
Rasmussen, M., Muller, H. -P. & Bjorck, L. Protein GRAB of Streptococcus pyogenes regulates proteolysis at the bacterial surface by binding α2-macroglobulin. J. Biol. Chem.274, 15336–15344 (1999). ArticleCASPubMed Google Scholar
Toppel, A. W. et al. Contribution of protein G-related α2-macroglobulin-binding protein to bacterial virulence in a mouse skin model of group A streptococcal infection. J. Infect. Dis.187, 1694–1703 (2003). ArticleCASPubMed Google Scholar
Lukomski, S. et al. Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun.66, 771–776 (1998). CASPubMedPubMed Central Google Scholar
Saouda, M., Wu, W., Conran, P. & Boyle, M. D. Streptococcal pyrogenic exotoxin B enhances tissue damage initiated by other Streptococcus pyogenes products. J. Infect. Dis.184, 723–731 (2001). ArticleCASPubMed Google Scholar
Collin, M. & Olsen, A. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect. Immun.69, 7187–7189 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jonsson, S. et al. Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J. Infect. Dis.152, 4–13 (1985). ArticleCASPubMed Google Scholar
Polissi, A. et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun.66, 5620–5629 (1998). CASPubMedPubMed Central Google Scholar
Hava, D. & Camilli, A. Large-scale identificationof serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol.45, 1389–1406 (2002). CASPubMedPubMed Central Google Scholar
Lau, G. W. et al. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol.40, 555–571 (2001). ArticleCASPubMed Google Scholar
Cundell, D. R. et al. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature377, 435–438 (1995). ArticleCASPubMed Google Scholar
Tuomanen, E. et al. The induction of meningeal inflammation by components of the pneumococcal cell wall. J. Infect. Dis.151, 859–868 (1985). ArticleCASPubMed Google Scholar
Canvin, J. R. et al. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type-2 pneumococcus. J. Infect. Dis.2, 119–123 (1995). Article Google Scholar
Alcantara, R. B., Preheim, L. C. & Gentry, M. J. Role of pneumolysin's complement-activating activity during pneumococcal bacteremia in cirrhotic rats. Infect. Immun.67, 2862–2866 (1999). CASPubMedPubMed Central Google Scholar
Benton, K. A., Everson, M. P. & Briles, D. E. A pneumolysin-negative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect. Immun.63, 448–455 (1995). CASPubMedPubMed Central Google Scholar
Berry, A. M. et al. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect. Immun.57, 2037–2042 (1989). CASPubMedPubMed Central Google Scholar
Braun, J. S. et al. Pneumococcal pneumolysin and H2O2 mediate brain cell apoptosis during meningitis. J. Clin. Invest.109, 19–27 (2002). Gives details of the role and mechanism of pneumolysin and hydrogen peroxide in inducing brain damage during pneumococcal meninigitis. ArticleCASPubMedPubMed Central Google Scholar
Comis, S. D. et al. Cytotoxic effects on hair cells of guinea pig cochlea produced by pneumolysin, the thiol activated toxin of Streptococcus pneumoniae. Acta Otolaryngol.113, 152–159 (1993). ArticleCASPubMed Google Scholar
Johnson, M. K. The role of pneumolysin in ocular infections with Streptococcus pneumoniae. Curr. Eye Res.9, 1107–1114 (1979). Article Google Scholar
Houldsworth, S., Andrew, P. W. & Mitchell, T. J. Pneumolysin stimulates production of tumor necrosis factor α and interleukin-1β by human mononuclear phagocytes. Infect. Immun.62, 1501–1503 (1994). CASPubMedPubMed Central Google Scholar
Braun, J. S. et al. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect. Immun.67, 3750–3756 (1999). CASPubMedPubMed Central Google Scholar
Cockeran, R. et al. Pneumolysin activates the synthesis and release of interleukin-8 by human neutrophils in vitro. J. Infect. Dis.186, 562–565 (2002). ArticleCASPubMed Google Scholar
Cockeran, R. et al. Pneumolysin potentiates production of prostaglandin E-2 and leukotriene B-4 by human neutrophils. Infect. Immun.69, 3494–3496 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rubins, J. B., Mitchell, T. J., Andrew, P. W. & Niewoehner, D. E. Pneumolysin activates phospholipase A in pulmonary artery endothelial cells. Infect. Immun.62, 3829–3836 (1994). CASPubMedPubMed Central Google Scholar
Rubins, J. B. et al. Toxicity of pneumolysin to pulmonary alveolar epithelial cells. Infect. Immun.61, 1352–1358 (1993). CASPubMedPubMed Central Google Scholar
Rubins, J. B., Duane, P. G., Charboneau, D. & Janoff, E. N. Toxicity of pneumolysin to pulmonary endothelial cells in vitro. Infect. Immun.60, 1740–1746 (1992). CASPubMedPubMed Central Google Scholar
Steinfort, C. et al. Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect. Immun.57, 2006–2013 (1989). CASPubMedPubMed Central Google Scholar
Paton, J. C. & Ferrante, A. Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect. Immun.41, 1212–1216 (1983). CASPubMedPubMed Central Google Scholar
Ferrante, A., Rowan-Kelly, B. & Paton, J. C. Inhibition of in vitro human lymphocyte response by the pneumococcal toxin pneumolysin. Infect. Immun.46, 585–589 (1984). CASPubMedPubMed Central Google Scholar
Paton, J. C., Rowan-Kelly, B. & Ferrante, A. Activation of human complement by the pneumococcal toxin pneumolysin. Infect. Immun.43, 1085–1087 (1984). CASPubMedPubMed Central Google Scholar
Rubins, J. B. et al. Distinct role for pneumolysin's cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am. J. Respir. Crit. Care Med.153, 1339–1346 (1996). ArticleCASPubMed Google Scholar
Hirst, R. A. et al. Relative roles of pneumolysin and hydrogen peroxide from Streptococcus pneumoniae in inhibition of ependymal ciliary beat frequency. Infect. Immun.68, 1557–1562 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stringaris, A. K. et al. Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol. Dis.11, 355–368 (2002). ArticleCASPubMed Google Scholar
Malley, R. et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl Acad. Sci. USA100, 1966–1971 (2003). ArticleCASPubMedPubMed Central Google Scholar
Crain, M. J. et al. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immun.58, 3293–3299 (1990). CASPubMedPubMed Central Google Scholar
McDaniel, L. S. et al. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J. Exp. Med.165, 381–394 (1987). ArticleCASPubMed Google Scholar
Neeleman, C. et al. Resistance to both complement activation and phagocytosis in type 3 pneumococci is mediated by the binding of complement regulatory protein factor H. Infect. Immun.67, 4517–4524 (1999). CASPubMedPubMed Central Google Scholar
Tu, A. T. et al. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect. Immun.67, 4720–4724 (1999). CASPubMedPubMed Central Google Scholar
Hammerschmidt, S., Bethe, G., Remane, P. H. & Chhatwal, G. S. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect. Immun.67, 1683–1687 (1999). CASPubMedPubMed Central Google Scholar
Rosenow, C. et al. Contribution of a novel choline binding protein to adherence, colonization, and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol.25, 819–829 (1997). ArticleCASPubMed Google Scholar
Smith, B. L. & Hostetter, M. K. C3 as substrate for adhesion of Streptococcus pneumoniae. J. Infect. Dis.182, 497–508 (2000). ArticleCASPubMed Google Scholar
Janulczyk, R. et al. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem.275, 37257–37263 (2000). ArticleCASPubMed Google Scholar
Dave, S., Brooks-Walter, A., Pangburn, M. K. & McDaniel, L. S. PspC, a pneumococcal surface protein, binds human Factor H. Infect. Immun.69, 3435–3437 (2001). ArticleCASPubMedPubMed Central Google Scholar
Madsen, M. et al. A pneumococcal protein that elicits interleukin-8 from pulmonary epithelial cells. J. Infect. Dis.181, 1330–1336 (2000). ArticleCASPubMed Google Scholar
Zhang, J. R. et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell102, 827–837 (2000). ArticleCASPubMed Google Scholar
Berry, A. M., Lock, R. A., Hansman, D. & Paton, J. C. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun.57, 2324–2330 (1989). CASPubMedPubMed Central Google Scholar
Gosink, K. K. et al. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun.68, 5690–5695 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science293, 498–506 (2001). Highlights the differences between the stains and shows the ability of the organism to transport many sugars. ArticleCASPubMed Google Scholar
Humphrey, J. H. Hyaluronidase production by pneumococci. J. Pathol. Bacteriol.55, 273–275 (1948). Google Scholar
Berry, A. M. & Paton, J. C. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun.68, 133–140 (2000). ArticleCASPubMedPubMed Central Google Scholar
Camara, M., Boulnois, G. J., Andrew, P. W. & Mitchell, T. J. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun.62, 3688–3695 (1994). CASPubMedPubMed Central Google Scholar
Tong, H. H., Blue, L. E., James, M. A. & DeMaria, T. F. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun.68, 921–924 (2000). ArticleCASPubMedPubMed Central Google Scholar
Winter, A. J. et al. A role for pneumolysin but not neuraminidase in the hearing loss and cochlear damage induced by experimental pneumococcal meningitis in guinea pigs. Infect. Immun.65, 4411–4418 (1997). CASPubMedPubMed Central Google Scholar
Kharat, A. S. & Tomasz, A. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun.71, 2758–2765 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lawrence, M. C. et al. The crytal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure6, 1553–1561 (1998). ArticleCASPubMed Google Scholar
Tseng, H. -J., McEwan, A. G., Paton, J. C. & Jennings, M. P. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect. Immun.70, 1635–1639 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bergmann, S. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed α-enolase of Streptococcus pneumoniae. Mol. Microbiol.49, 411–423 (2003). ArticleCASPubMed Google Scholar
Yesilkaya, H. et al. Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect. Immun.68, 2819–2826 (2000). ArticleCASPubMedPubMed Central Google Scholar
Auzat, I. et al. The NADH oxidase of Streptococcus pneumoniae: its involvement in competence and virulence. Mol. Microbiol.34, 1018–1028 (1999). ArticleCASPubMed Google Scholar
Duane, P. G., Rubins, J. B., Weisel, H. R. & Janoff, E. N. Identification of hydrogen peroxide as a Streptococcus pneumoniae toxin for rat alveolar epithelial cells. Infect. Immun.61, 4392–4397 (1993). CASPubMedPubMed Central Google Scholar
Brown, J. S., Gilliland, S. M. & Holden, D. W. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol.40, 572–585 (2001). ArticleCASPubMed Google Scholar
Smoot, L. M. et al. Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect. Immun.70, 7095–7104 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lei, B. et al. Opsonophagocytosis-inhibiting Mac protein of group A Streptococcus: identification and characteristics of two genetic complexes. Infect. Immun.70, 6880–6890 (2002). ArticleCASPubMedPubMed Central Google Scholar
Banks, D. J., Beres, S. B. & Musser, J. M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol.10, 515–521 (2002). ArticleCASPubMed Google Scholar
Smoot, J. C. et al. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl Acad. Sci. USA99, 4668–4673 (2002). This paper and references 148, 149 and 150 describe the genome sequences of four strains of GAS. These studies describe the genomic organization of the strains, microarray analysis of strains associated with acute rheumatic fever, and provide an insight into the role of phages and genomic rearrangements in virulence. ArticleCASPubMedPubMed Central Google Scholar
Voyich, J. M. et al. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl Acad. Sci. USA100, 1996–2001 (2003). Analysis of genome-wide gene-expression changes on interaction of GAS with human polymorphonuclear cells. Confirmation of the role of a two-component system in virulence and that this system is upregulated during human infection. ArticleCASPubMedPubMed Central Google Scholar
Graham, M. R. et al. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc. Natl Acad. Sci. USA99, 13855–13860 (2002). Global expression profiling in GAS using microarrays to examine the control of virulence gene expression. ArticleCASPubMedPubMed Central Google Scholar
Virtaneva, K. et al. Group A Streptococcus gene expression in humans and cynomolgus macaques with acute pharyngitis. Infect. Immun.71, 2199–2207 (2003). Examination of gene expression in GAS when associated with pharyngitis. Use of human samples and an animal model to measure gene expression during the disease process. ArticleCASPubMedPubMed Central Google Scholar
Kihlberg, B. M. et al. Biological properties of a Streptococcus pyogenes mutant generated by Tn916 insertion in mga. Microb. Pathog.19, 299–315 (1995). ArticleCASPubMed Google Scholar
Fournier, B., Klier, A. & Rapoport, G. The two-component system ArlS–ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol.41, 247–261 (2001). ArticleCASPubMed Google Scholar
Tettelin, H. et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc. Natl Acad. Sci. USA99, 12391–12396 (2002). ArticleCASPubMedPubMed Central Google Scholar
Beres, S. B. et al. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl Acad. Sci. USA99, 10078–10083 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ferretti, J. J. et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl Acad. Sci. USA98, 4658–4663 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, I. et al. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res.13, 1042–1055 (2003). ArticleCASPubMedPubMed Central Google Scholar