Population and evolutionary dynamics of phage therapy (original) (raw)
Radetsky, P. The good virus. Discover17, 52 (1996). Google Scholar
Alisky, J., Iczkowski, K., Rapoport, A. & Troitsky, N. Bacteriophages show promise as antimicrobial agents. J. Infect.36, 5–15 (1998). ArticleCAS Google Scholar
Summers, W. C. Bacteriophage therapy. Annu. Rev. Microbiol.55, 437–451 (2001). ArticleCAS Google Scholar
Sulakvelidze, A. & Morris, J. G. Jr. Bacteriophages as therapeutic agents. Ann. Med.33, 507–509 (2001). ArticleCAS Google Scholar
Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Jr. Bacteriophage therapy. Antimicrob. Agents Chemother.45, 649–659 (2001). ArticleCAS Google Scholar
Merril, C. R., Scholl, D. & Adhya, S. L. The prospect for bacteriophage therapy in western medicine. Nature Rev. Drug Discov.2, 489–497 (2003). ArticleCAS Google Scholar
Finland, M. Adventures with antibacterial drugs. Clin. Pharmacol. Ther.13, 469–511 (1972). ArticleCAS Google Scholar
Keller, M. A. & Stiehm, E. R. Passive immunity in prevention and treatment of infectious diseases. Clin. Microbiol. Rev.13, 602–614 (2000). ArticleCAS Google Scholar
Smith, H. W. & Hugggins, M. B. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Microbiol.128, 307–318 (1982). CASPubMed Google Scholar
Smith, H. W. & Huggin, M. B. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol.129, 2659–2675 (1983). CASPubMed Google Scholar
Smith, H. W., Huggins, M. B. & Shaw, K. M. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophage. J. Gen. Microbiol.133, 1111–1126 (1987). CASPubMed Google Scholar
Soothill, J. S. Treatment of experimental infections of mice with bacteriophage. J. Med. Microbiol.37, 258–262 (1992). ArticleCAS Google Scholar
Soothill, J. S. Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns20, 209–11 (1994). ArticleCAS Google Scholar
Merril, C. R. et al. Long-circulating bacteriophage as antibacterial agents. Proc. Natl Acad. Sci. USA93, 3188–3192 (1996). ArticleCAS Google Scholar
Matsuzaki, S. et al. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage φ MR11. J. Infect. Dis.187, 613–624 (2003). ArticleCAS Google Scholar
Biswas, B. et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun.70, 204–210 (2002). ArticleCAS Google Scholar
Park, S. C. & Nakai, T. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Organ53, 33–9 (2003). Article Google Scholar
Weld, R. J. & A. J. Heinemann, J. Journal of Theoretical Biology (in the press).
Levin, B. R. & Bull, J. J. Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteria and antibiotics. Am. Nat.147, 881–898 (1996). Article Google Scholar
Payne, R. J. & Jansen, V. A. Phage therapy: the peculiar kinetics of self-replicating pharmaceuticals. Clin. Pharmacol. Ther.68, 225–230 (2000). ArticleCAS Google Scholar
Payne, R. J. & Jansen, V. A. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol.208, 37–48 (2001). ArticleCAS Google Scholar
Payne, R. J. & Jansen, V. A. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinet.42, 315–325 (2003). ArticleCAS Google Scholar
Kasman, L. M. et al. Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol.76, 5557–5564 (2002). ArticleCAS Google Scholar
Adams, M. H. Bacteriophages (Wiley, New York, 1959). Google Scholar
Stent, G. S. Molecular Biology of Bacterial Viruses (Freeman, San Francisco, 1963). Google Scholar
Campbell, A. The future of bacteriophage biology. Nature Rev. Genet.4, 471–477 (2003). ArticleCAS Google Scholar
Westwater, C. et al. Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob. Agents Chemother.47, 1301–1307 (2003). ArticleCAS Google Scholar
Leverentz, B. et al. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J. Food Prot.64, 1116–1121 (2001). ArticleCAS Google Scholar
Leverentz, B. et al. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol.69, 4519–4526 (2003). ArticleCAS Google Scholar
Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M. & Donoghue, A. M. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci.81, 1486–1491 (2002). ArticleCAS Google Scholar
Nakai, T. & Park, S. C. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol.153, 13–8 (2002). Article Google Scholar
Holtzman, D. Phage eyed as agents to control foodborne pathogens. ASM News69, 489–490 (2003). Google Scholar
Bull, J. J., Levin, B. R., DeRouin, T., Walker, N. & Bloch, C. A. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol.2, 35 (2002). ArticleCAS Google Scholar
Tuomanen, E. Phenotypic tolerance: the search for β-lactam antibiotics that kill non-growing bacteria. Rev. Infect. Dis.8, S279–S291 (1986). ArticleCAS Google Scholar
Kruger, D. H. & Bickle, T. A. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev.47, 345–360 (1983). CASPubMedPubMed Central Google Scholar
Lenski, R. E. & Levin, B. R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat.125, 585–602 (1985). Article Google Scholar
Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett.3, 362–377 (2000). Article Google Scholar
Chao, L., Levin, B. R. & Stewart, F. M. A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology58, 369–378 (1977). Article Google Scholar
Bohannan, B. J., Kerr, B., Jessup, C. M., Hughes, J. B. & Sandvik, G. Trade-offs and coexistence in microbial microcosms. Antonie Van Leeuwenhoek81, 107–115 (2002). ArticleCAS Google Scholar
Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. R. Soc. Lond. B Biol. Sci.269, 931–936 (2002). Article Google Scholar
Mizoguchi, K. et al. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl. Environ. Microbiol.69, 170–176 (2003). ArticleCAS Google Scholar
Campbell, A. Conditions for the existence of bacteriophage. Evolution15, 153–165 (1961). Article Google Scholar
Levin, B. R., Stewart, F. M. & Chao, L. Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am. Nat.977, 3–24 (1977). Article Google Scholar
Lenski, R. E. Dynamics of interactions between bacteria and virulent bacteriophage. Adv. Microb. Ecol.10, 1–44 (1988). ArticleCAS Google Scholar
Schrag, S. & Mittler, J. E. Host parasite coexistence: the role of spatial refuges in stabilizing bacteria–phage interactions. Am. Nat.148, 438–477 (1996). Article Google Scholar
Korona, R. & Levin, B. R. Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution47, 556–575 (1993). Article Google Scholar
Ahmad, S. I. Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. Med. Hypotheses58, 327–331 (2002). ArticleCAS Google Scholar
Broxmeyer, L. et al. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J. Infect. Dis.186, 1155–1160 (2002). Article Google Scholar
Schrag, S. & Perrot, V. Reducing antibiotic resistance. Nature28, 120–121 (1996). Article Google Scholar
Schrag, S., Perrot, V. & Levin, B. Adaptation to the fitness cost of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B Biol. Sci.264, 1287–1291 (1997). ArticleCAS Google Scholar
Bjorkman, J. & Andersson, D. I. The cost of antibiotic resistance from a bacterial perspective. Drug Resist. Update3, 237–245 (2000). ArticleCAS Google Scholar
Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol.40, 433–439 (2001). ArticleCAS Google Scholar
Spitznagel, J. K. in Mechanisms of Microbial Diseases (eds Schaechter, M., Medhoff, M. G. & Eisenstein, B. J.) 90–114 (Williams and Wilkins, Baltimore, USA, 1993). Google Scholar
Zeigler, H. K. in Mechanisms of Microbial Diseases (eds Schaechter, M., Medhoff, M. G. & Eisenstein, B. J.) 114–153 (Williams and Wilkins, Baltimore, USA, 1993). Google Scholar
Antia, R., Levin, B. R. & May, R. M. Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am. Nat.144, 457–472 (1994). Article Google Scholar
Twort, F. W. An investigation on the nature of ultra-microscopic viruses. Lancet11, 1241–1243 (1915). Article Google Scholar
d'Herelle, F. In The Bacteriophage and its Behavior. 490–541 (Williams and Wilkins, Baltimore, Maryland, 1926). Google Scholar
Eaton, M. D. & Bayne-Jones, S. Bacteriophage therapy. JAMA103, 1769–1776, 1847–1853 & 1934–1939 (1934). ArticleCAS Google Scholar
Asheshov, I. N., Wilson, J. & Topley, W. W. C. The effect of an anti-VI bacteriophage on typhoid infection in mice. Lancet1, 319–320 (1937). Article Google Scholar
Dubos, R. J., Straus, J. H. & Pierce, C. The multiplication of bacteriophage in vivo and its protective effects against expermiental infection with Shigella dysenteria. J. Exp. Med.20, 161–169 (1943). Article Google Scholar
Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol.3, 371–394 (1949). ArticleCAS Google Scholar