Microbial perchlorate reduction: rocket-fuelled metabolism (original) (raw)

References

  1. Waldman, P. Pentagon hid pollution report lawmakers say. Wall Street Journal (New York, 19 May 2003).
  2. Renner, R. Perchlorate regulation faces further delay. Environ. Sci. Technol. 37, 166A–167A (2003).
    Article PubMed Google Scholar
  3. Hogue, C. Rocket-fueled river. Chem. Eng. News 81, 37–46 (2003). A comprehensive overview of the extent of perchlorate contamination in the southwestern United States.
    Article Google Scholar
  4. Urbansky, E. T. Quantitation of perchlorate ion: practices and advances applied to the analysis of common matrices. Crit. Rev. Anal. Chem. 30, 311–343 (2000). An in-depth review of the analytical methods available for the analysis of perchlorate in environmental samples by the leading practitioner in the field.
    Article CAS Google Scholar
  5. Orris, G. J., Harvey, G. J., Tsui, D. T. & Eldrige, J. E. Open-File Report 03–314 US Geological Survey, Tucson, Arizona (2003).
  6. Collette, T. W. et al. Analysis of hydroponic fertilizer matrixes for perchlorate: comparison of analytical techniques. Analyst 128, 88–97 (2003).
    Article CAS PubMed Google Scholar
  7. Christen, K. EPA perchlorate decision takes many by surprise. Environ. Sci. Technol. 37, 347A–348A (2003).
    Article CAS PubMed Google Scholar
  8. Motzer, W. E. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301–311 (2001). A comprehensive review of the extent of perchlorate contamination in the United States and the issues associated with this contaminant.
    Article CAS Google Scholar
  9. Kirk, A. B., Smith, E. E., Tian, K., Anderson, T. A. & Dasgupta, P. K. Perchlorate in milk. Environ. Sci. Technol. 37, 4979–4981 (2003).
    Article CAS PubMed Google Scholar
  10. Stanbury, J. B. & Wyngaarden, J. B. Effect of perchlorate on the human thyroid gland. Metabolism 1, 533–539 (1952).
    CAS PubMed Google Scholar
  11. Wolff, J. Perchlorate and the thyroid gland. Pharmacol. Rev. 50, 89–105 (1998).
    CAS PubMed Google Scholar
  12. Clark, J. J. J. in Perchlorate in the Environment (ed. Urbansky, E. T.) 15–30 (Kluwer Academic/Plenum, New York, 2000).
    Book Google Scholar
  13. Howdeshell, K. L. A model of the development of the brain as a construct of the thyroid system. Environ. Health Perspect. 110, 337–348 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  14. Porterfield, S. P. Vulnerabilities of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ. Health Perspect. 102, 125–130 (1994).
    PubMed PubMed Central Google Scholar
  15. Haddow, J. E. et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341, 549–555 (1999).
    Article CAS PubMed Google Scholar
  16. Renner, R. Perchlorate-tainted wells spur government action. Environ. Sci. Technol. 32, 210A (1998).
    Article CAS PubMed Google Scholar
  17. US Environmental Protection Agency. Drinking water contaminant candidate list Doc No. EPA/600/F–98/002. (Washington DC, 1998).
  18. Urbansky, E. T. Perchlorate chemistry: implications for analysis and remediation. Bioremed. J. 2, 81–95 (1998). An older review that comprehensively outlines the chemistry and reactivity of perchlorate.
    Article CAS Google Scholar
  19. Urbansky, E. T. Perchlorate as an environmental contaminant. Environ. Sci. Pollut. Res. 9, 187–192 (2002).
    Article CAS Google Scholar
  20. Wallace, W., Ward, T., Breen, A. & Attaway, H. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16, 68–72 (1996).
    Article CAS Google Scholar
  21. Ericksen, G. E. The Chilean nitrate deposits. Am. Sci. 71, 366–374 (1983).
    Google Scholar
  22. Schilt, A. A. Perchloric Acid and Perchlorates (The G. Fredrick Smith Chemical Comany, Ohio, 1979).
    Google Scholar
  23. Urbansky, E. T., Brown, S. K., Magnusson, M. L. & Kelty, C. A. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut. 112, 299–302 (2001).
    Article CAS PubMed Google Scholar
  24. van Aken, B. & Schnoor, J. L. Evidence of perchlorate (ClO4−) reduction in plant tissues (Poplar tree) using radio-labeled 36ClO4−. Environ. Sci. Technol. 36, 2783–2788 (2002).
    Article CAS PubMed Google Scholar
  25. Susarla, S., Bacchus, T., Harvey, G. J. & McCutcheon, S. C. Phytotransformations of perchlorate contaminated waters. Environ. Technol. 21, 1055–1065 (2000).
    Article CAS Google Scholar
  26. Ellington, J. J. et al. Determination of perchlorate in tobacco plants and tobacco products. Environ. Sci. Technol. 35, 3213–3218 (2001).
    Article CAS PubMed Google Scholar
  27. Urbansky, E. T. in Chemistry and Technology of Explosives 602–620 (Pergamon Press, Oxford, 1988).
    Google Scholar
  28. Roote, D. S. Technology status report perchlorate treatment technologies first edition. Doc No. DAAE30-98-C-1050 (Ground-Water Remediation Technologies Analysis Center, Pittsburgh, 2001).
  29. Urbansky, E. T. & Brown, S. K. Perchlorate retention and mobility in soils. J. Environ. Monit. 5, 455–462 (2003).
    Article CAS PubMed Google Scholar
  30. Xu, J., Song, Y., Min, B., Steinberg, L. & Logan, B. E. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci. 20, 405–422 (2003).
    Article CAS Google Scholar
  31. Aslander, A. Experiments on the eradication of Canada Thistle, Cirsium arvense, with chlorates and other herbicides. J. Agric. Res. 36, 915 (1928).
    CAS Google Scholar
  32. Coates, J. D., Michaelidou, U., O'Connor, S. M., Bruce, R. A. & Achenbach, L. A. in Perchlorate in the Environment (ed. Urbansky, E. T.) 257–270 (Kluwer Academic/Plenum, New York, 2000).
    Book Google Scholar
  33. Bryan, E. H. & Rohlich, G. A. Biological reduction of sodium chlorate as applied to measurement of sewage BOD. Sewage Ind. Waste 26, 1315–1324 (1954).
    CAS Google Scholar
  34. Bryan, E. H. Application of the chlorate BOD procedure to routine measurement of wastewater strength. J. Wat. Pollut. Cont. Fed. 38, 1350–1362 (1966).
    CAS Google Scholar
  35. Hackenthal, E., Mannheim, W., Hackenthal, R. & Becher, R. Die reduktion von perchlorat durch bakterien. I. Untersucungen an intaken zellen. Biochem. Pharmacol. 13, 195–206 (1964).
    Article CAS PubMed Google Scholar
  36. Hackenthal, E. Die reduktion von perchlorat durch bacterien. II. Die identitat der nitratreduktase und des perchlorat reduzierenden enzyms aus B. cereus. Biochem. Pharm. 14, 1313–1324 (1965).
    Article CAS PubMed Google Scholar
  37. de Groot, G. N. & Stouthamer, A. H. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate resistant mutants. Arch. Microbiol. 66, 220–233 (1969).
    CAS Google Scholar
  38. Roldan, M. D., Reyes, F., Moreno-Vivian, C. & Castillo, F. Chlorate and nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr. Microbiol. 29, 241–245 (1994).
    Article CAS Google Scholar
  39. Stewart, V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52, 190–232 (1988).
    CAS PubMed PubMed Central Google Scholar
  40. Neidhardt, F. C. et al. (eds) Escherichia coli and Salmonella — Cellular and Molecular Biology (ASM Press, Washington DC, 1996).
    Google Scholar
  41. Coates, J. D. et al. The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65 5234–5241 (1999). The first demonstration of the diversity and ubiquitous nature of bacteria capable of microbial (per)chlorate reduction
    CAS PubMed PubMed Central Google Scholar
  42. Bruce, R. A., Achenbach, L. A. & Coates, J. D. Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ. Microbiol. 1, 319–331 (1999).
    Article CAS PubMed Google Scholar
  43. Michaelidou, U., Achenbach, L. A. & Coates, J. D. in Perchlorate in the Environment (ed. Urbansky, E. T.) 271–283 (Kluwer Academic/Plenum, New York, 2000).
    Book Google Scholar
  44. Romanenko, V. I., Korenkov, V. N. & Kuznetsov, S. I. Bacterial decomposition of ammonium perchlorate. Mikrobiologiya 45, 204–209 (1976).
    CAS Google Scholar
  45. Stepanyuk, V. et al. New species of the Acinetobacter genus Acinetobacter thermotoleranticus sp. nov. Mikrobiologiya 61, 347–356 (1992).
    Google Scholar
  46. Malmqvist, A. et al. Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. System. Appl. Microbiol. 17, 58–64 (1994). The first complete description of an organism capable of growth on chlorate and not perchlorate.
    Article Google Scholar
  47. Rikken, G., Kroon, A. & van Ginkel, C. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol. 45, 420–426 (1996). One of the seminal papers on microbial perchlorate reduction describing a new isolate and the reductive pathway utilized.
    Article CAS Google Scholar
  48. Coates, J. D. et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411, 1039–1043 (2001). The first isolation and characterization of an organism of any type capable of anaerobic degradation of benzene.
    Article CAS PubMed Google Scholar
  49. Zhang, H. S., Bruns, M. A. & Logan, B. E. Chemolithoautotrophic perchlorate reduction by a novel hydrogen-oxidizing bacterium. Environ. Microbiol. 4, 570–576 (2002).
    Article CAS PubMed Google Scholar
  50. Herman, D. C. & Frankenberger, W. T. Jr. Bacterial reduction of perchlorate and nitrate in water. J. Environ. Qual. 28, 1018–1024 (1999).
    Article CAS Google Scholar
  51. Okeke, B. C., Giblin, T. & Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. 118, 357–363 (2002).
    Article CAS PubMed Google Scholar
  52. Waller, A. S., Cox, E. E. & Edwards, E. A. Perchlorate-reducing microorganisms isolated from contaminated sites. Environ. Microbiol. 6, 517–527 (2004).
    Article CAS PubMed Google Scholar
  53. Coates, J. D., Cole, K. A., Chakraborty, R., O'Connor, S. M. & Achenbach, L. A. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration. Appl. Environ. Microbiol. 68, 2445–2452 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  54. Chaudhuri, S. K., Lack, J. G. & Coates, J. D. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 67, 2844–2848 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  55. Lack, J. G., Chaudhuri, S. K., Chakraborty, R., Achenbach, L. A. & Coates, J. D. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb. Ecol. 43, 424–431 (2002).
    Article CAS PubMed Google Scholar
  56. Lack, J. G. et al. Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol. 68, 2704–2710 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  57. Achenbach, L. A., Bruce, R. A., Michaelidou, U. & Coates, J. D. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 51, 527–533 (2001). The original description of the two dominant species of (per)chlorate-reducing species found in the environment.
    Article CAS PubMed Google Scholar
  58. Achenbach, L. A. & Coates, J. D. Disparity between bacterial phylogeny and physiology. ASM News 66, 714–716 (2000).
    Google Scholar
  59. Cummings, D. E., Caccavo F. Jr, Spring, S. & Rosenzweig, R. F. Ferribacterium limneticum gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch. Microbiol. 171, 183–188 (1999).
    Article CAS Google Scholar
  60. Tan, Z. & Reinhold-Hurek, B. Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int. J. Syst. Evol. Microbiol. 53, 1139–1142 (2003).
    Article CAS PubMed Google Scholar
  61. Coates, J. D., Bruce, R. A., Patrick, J. A. & Achenbach, L. A. Hydrocarbon bioremediative potential of (per)chlorate-reducing bacteria. Bioremed. J. 3, 323–334 (1999).
    Article CAS Google Scholar
  62. Bender, K. S., Rice, M. R., Fugate, W. H., Coates, J. D. & Achenbach, L. A. Metabolic primers for the detection of (per)chlorate-reducing bacteria in the environment. Appl. Environ. Microbiol. (in the press).
  63. Logan, B. E. et al. Kinetics of perchlorate- and chlorate-respiring bacteria. Appl. Environ. Microbiol 67, 2499–2506 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  64. Coates, J. D. in Bergey's Manual of Systematic Bacteriology (eds Brenner, D., Krieg, N., Staley, J. & Garrity, G.) (Springer–Verlag, New York, in the press).
  65. Bender, K. S., O'Connor, S. M., Chakraborty, R., Coates, J. D. & Achenbach, L. A. The chlorite dismutase gene of Dechloromonas agitata strain CKB: sequencing, transcriptional analysis and its use as a metabolic probe. Appl. Environ. Microbiol. 68, 4820–4826 (2002). The first description of the chlorite dismutase gene from an organism capable of both perchlorate and chlorate reduction.
    Article CAS PubMed PubMed Central Google Scholar
  66. Chaudhuri, S. K., O'Connor, S. M., Gustavson, R. L., Achenbach, L. A. & Coates, J. D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol. 68, 4425–4430 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  67. Pollock, J., Achenbach, L. A. & Coates, J. D. Potential for in-situ bioremediation of perchlorate contaminated environments. Appl. Environ. Microbiol. (in the press).
  68. Logan, B. E., Wu, J. & Unz, R. F. Biological perchlorate reduction in high-salinity solutions. Wat. Res. 35, 3034–3038 (2001).
    Article CAS Google Scholar
  69. Bruce, R. A. MSc. Thesis (Department of Microbiology, Southern Illinois University, Carbondale, 1999).
    Google Scholar
  70. Kengen, S. W. M., Rikken, G. B., Hagen, W. R., Van Ginkel, C. G. & Stams, A. J. M. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol. 181, 6706–6711 (1999). The first purification and description of the perchlorate reductase enzyme.
    CAS PubMed PubMed Central Google Scholar
  71. van Ginkel, C., Rikken, G., Kroon, A. & Kengen, S. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166, 321–326 (1996). The first description of the chlorite dismutase enzyme, which, in reference 41, was subsequently shown to be common to all perchlorate-reducing bacteria.
    Article CAS PubMed Google Scholar
  72. Stenklo, K., Thorell, H. D., Bergius, H., Aasa, R. & Nilsson, T. Chlorite dismutase from Ideonella dechloratans. J. Biol. Inorgan. Chem. 6, 601–607 (2001).
    Article CAS Google Scholar
  73. O'Connor, S. M. & Coates, J. D. A universal immuno-probe for (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 68, 3108–3113 (2002). The first demonstration of the functional expression and highly conserved nature of the chlorite dismutase of perchlorate-reducing bacteria.
    Article CAS PubMed PubMed Central Google Scholar
  74. Thorell, H. D., Karlsson, J., Portelius, E. & Nilsson, T. Cloning, characterisation, and expression of a novel gene encoding chlorite dismutase from Ideonella dechloratans. Biochim. Biophys. Acta 1577, 445–451 (2002). The first description of the chlorite dismutase gene from a chlorate-reducing organism.
    Article CAS PubMed Google Scholar
  75. Xu, J. L., Trimble, J. J., Steinberg, L. & Logan, B. E. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res. 38, 673–680 (2004).
    Article CAS PubMed Google Scholar
  76. Bender, K. S., Chakraborty, R., Belchik, S. M., Coates, J. D. & Achenbach, L. A. Sequencing and transcriptional analysis of a perchlorate reductase gene from Dechloromonas agitata. Appl. Environ. Microbiol. (in the press).
  77. Wolterink, A. F. W. M., Jonker, A. B., Kengen, S. W. M. & Stams, A. J. M. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 52, 2183–2190 (2002).
    CAS PubMed Google Scholar
  78. Danielsson-Thorell, H., Stenklo, K., Karlsson, J. & Nilsson, T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69, 5585–5592 (2003).
    Article CAS PubMed Central Google Scholar
  79. Wolterink, A. F. W. M. et al. Characterization of the chlorate reductase from Pseudomonas chloritidismutans. J. Bacteriol. 185, 3210–3213 (2003). The first description of the chlorate reductase enzyme.
    Article CAS PubMed PubMed Central Google Scholar
  80. Coleman, M. L., Ader, M., Chaudhuri, S. & Coates, J. D. Microbial isotopic fractionation of perchlorate chlorine. Appl. Environ. Microbiol. 69, 4997–5000 (2003). The first demonstration that perchlorate-reducing bacteria can fractionate chlorine stable isotopes.
    Article CAS PubMed PubMed Central Google Scholar
  81. Woese, C. R. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3–18 (Springer–Verlag, New York, 1992).
    Google Scholar
  82. Coates, J. D. & Achenbach, L. A. in Manual of Environmental Microbiology (eds Hurst, C. J., Knudsen, G. R., McInerney, M. J., Stetzenbach, L. D. & Walter, M. W.) 719–727 (ASM Press, Washington DC, 2001).
    Google Scholar
  83. Bailey, N. J. L., Krouse, H. R., Evans, C. R. & Rogers, M. A. Alteration of crude oil by waters and bacteria — evidence from geochemical and isotope studies. Am. Assoc. Petrol. Geol. Bull. 57, 1276 (1973).
    CAS Google Scholar
  84. Ku, T. C. W., Walter, L. M., Coleman, M. L., Blake, R. E. & Martini, A. M. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim. Cosmochim. Acta 63, 2529–2546 (1999).
    Article CAS Google Scholar
  85. Nissenbaum, A., Presley, B. J. & Kaplan, I. R. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia, I, Chemical and isotopic changes in major components of interstitial water. Geochim. Cosmochim. Acta 36, 1007–1027 (1972).
    Article CAS Google Scholar
  86. Jendrzejewski, N., Eggenkamp, H. G. M. & Coleman, M. L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl. Geochem. 16, 1021–1031 (2001).
    Article CAS Google Scholar
  87. Ahad, J. M. E., Lollar, B. S., Edwards, E. A., Slater, G. F. & Sleep, B. E. Carbon isotope fractionation during anaerobic biodegradation of toluene: implications for intrinsic bioremediation. Environ. Sci. Technol. 34, 892–896 (2000).
    Article CAS Google Scholar
  88. Cloud, P. E., Friedman, I. & Sesler, F. D. Microbiological fractionation of the hydrogen isotopes. Science 127, 1394 (1958).
    Article CAS Google Scholar
  89. Hall, J. A., Kalin, R. M., Larkin, M. J., Allen, C. C. R. & Harper, D. B. Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org. Geochem. 30, 801–811 (1999).
    Article CAS Google Scholar
  90. Harrison, A. G. & Thode, H. G. Mechanism of the bacterial fractionation of sulphate from isotope fractionation studies. Faraday Soc. Trans. 54, 84 (1957).
    Article Google Scholar
  91. Krichevsky, M. I., Sesler, F. D., Friedman, I. & Newell, M. Deuterium fractionation during molecular H2 formation in a marine pseudomonad. J. Mar. Biol 236, 2520 (1961).
    CAS Google Scholar
  92. Morasch, B., Richnow, H., Schink, B. & Meckenstock, R. Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl. Environ. Microbiol. 67, 4842–4849 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  93. Sturchio, N. C., Hatzinger, P. B., Arkins, M., Suh, C. & Heraty, L. Chlorine isotope fractionation during microbial reduction of perchlorate. Environ. Sci. Technol. 37, 3859–3863 (2003).
    Article CAS PubMed Google Scholar
  94. Reinhold–Hurek, B. & Hurek, T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 649–659 (2000).
    Article PubMed Google Scholar
  95. Engelhard, M., Hurek, T. & Reinhold–Hurek, B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ. Microbiol. 2, 131–141 (2000).
    Article CAS PubMed Google Scholar

Download references