Waldman, P. Pentagon hid pollution report lawmakers say. Wall Street Journal (New York, 19 May 2003).
Renner, R. Perchlorate regulation faces further delay. Environ. Sci. Technol.37, 166A–167A (2003). ArticlePubMed Google Scholar
Hogue, C. Rocket-fueled river. Chem. Eng. News81, 37–46 (2003). A comprehensive overview of the extent of perchlorate contamination in the southwestern United States. Article Google Scholar
Urbansky, E. T. Quantitation of perchlorate ion: practices and advances applied to the analysis of common matrices. Crit. Rev. Anal. Chem.30, 311–343 (2000). An in-depth review of the analytical methods available for the analysis of perchlorate in environmental samples by the leading practitioner in the field. ArticleCAS Google Scholar
Orris, G. J., Harvey, G. J., Tsui, D. T. & Eldrige, J. E. Open-File Report 03–314 US Geological Survey, Tucson, Arizona (2003).
Collette, T. W. et al. Analysis of hydroponic fertilizer matrixes for perchlorate: comparison of analytical techniques. Analyst128, 88–97 (2003). ArticleCASPubMed Google Scholar
Christen, K. EPA perchlorate decision takes many by surprise. Environ. Sci. Technol.37, 347A–348A (2003). ArticleCASPubMed Google Scholar
Motzer, W. E. Perchlorate: problems, detection, and solutions. Environ. Forensics2, 301–311 (2001). A comprehensive review of the extent of perchlorate contamination in the United States and the issues associated with this contaminant. ArticleCAS Google Scholar
Kirk, A. B., Smith, E. E., Tian, K., Anderson, T. A. & Dasgupta, P. K. Perchlorate in milk. Environ. Sci. Technol.37, 4979–4981 (2003). ArticleCASPubMed Google Scholar
Stanbury, J. B. & Wyngaarden, J. B. Effect of perchlorate on the human thyroid gland. Metabolism1, 533–539 (1952). CASPubMed Google Scholar
Wolff, J. Perchlorate and the thyroid gland. Pharmacol. Rev.50, 89–105 (1998). CASPubMed Google Scholar
Clark, J. J. J. in Perchlorate in the Environment (ed. Urbansky, E. T.) 15–30 (Kluwer Academic/Plenum, New York, 2000). Book Google Scholar
Howdeshell, K. L. A model of the development of the brain as a construct of the thyroid system. Environ. Health Perspect.110, 337–348 (2002). ArticleCASPubMedPubMed Central Google Scholar
Porterfield, S. P. Vulnerabilities of the developing brain to thyroid abnormalities: environmental insults to the thyroid system. Environ. Health Perspect.102, 125–130 (1994). PubMedPubMed Central Google Scholar
Haddow, J. E. et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med.341, 549–555 (1999). ArticleCASPubMed Google Scholar
Renner, R. Perchlorate-tainted wells spur government action. Environ. Sci. Technol.32, 210A (1998). ArticleCASPubMed Google Scholar
US Environmental Protection Agency. Drinking water contaminant candidate list Doc No. EPA/600/F–98/002. (Washington DC, 1998).
Urbansky, E. T. Perchlorate chemistry: implications for analysis and remediation. Bioremed. J.2, 81–95 (1998). An older review that comprehensively outlines the chemistry and reactivity of perchlorate. ArticleCAS Google Scholar
Urbansky, E. T. Perchlorate as an environmental contaminant. Environ. Sci. Pollut. Res.9, 187–192 (2002). ArticleCAS Google Scholar
Wallace, W., Ward, T., Breen, A. & Attaway, H. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol.16, 68–72 (1996). ArticleCAS Google Scholar
Ericksen, G. E. The Chilean nitrate deposits. Am. Sci.71, 366–374 (1983). Google Scholar
Schilt, A. A. Perchloric Acid and Perchlorates (The G. Fredrick Smith Chemical Comany, Ohio, 1979). Google Scholar
Urbansky, E. T., Brown, S. K., Magnusson, M. L. & Kelty, C. A. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut.112, 299–302 (2001). ArticleCASPubMed Google Scholar
van Aken, B. & Schnoor, J. L. Evidence of perchlorate (ClO4−) reduction in plant tissues (Poplar tree) using radio-labeled 36ClO4−. Environ. Sci. Technol.36, 2783–2788 (2002). ArticleCASPubMed Google Scholar
Susarla, S., Bacchus, T., Harvey, G. J. & McCutcheon, S. C. Phytotransformations of perchlorate contaminated waters. Environ. Technol.21, 1055–1065 (2000). ArticleCAS Google Scholar
Ellington, J. J. et al. Determination of perchlorate in tobacco plants and tobacco products. Environ. Sci. Technol.35, 3213–3218 (2001). ArticleCASPubMed Google Scholar
Urbansky, E. T. in Chemistry and Technology of Explosives 602–620 (Pergamon Press, Oxford, 1988). Google Scholar
Roote, D. S. Technology status report perchlorate treatment technologies first edition. Doc No. DAAE30-98-C-1050 (Ground-Water Remediation Technologies Analysis Center, Pittsburgh, 2001).
Urbansky, E. T. & Brown, S. K. Perchlorate retention and mobility in soils. J. Environ. Monit.5, 455–462 (2003). ArticleCASPubMed Google Scholar
Xu, J., Song, Y., Min, B., Steinberg, L. & Logan, B. E. Microbial degradation of perchlorate: principles and applications. Environ. Eng. Sci.20, 405–422 (2003). ArticleCAS Google Scholar
Aslander, A. Experiments on the eradication of Canada Thistle, Cirsium arvense, with chlorates and other herbicides. J. Agric. Res.36, 915 (1928). CAS Google Scholar
Coates, J. D., Michaelidou, U., O'Connor, S. M., Bruce, R. A. & Achenbach, L. A. in Perchlorate in the Environment (ed. Urbansky, E. T.) 257–270 (Kluwer Academic/Plenum, New York, 2000). Book Google Scholar
Bryan, E. H. & Rohlich, G. A. Biological reduction of sodium chlorate as applied to measurement of sewage BOD. Sewage Ind. Waste26, 1315–1324 (1954). CAS Google Scholar
Bryan, E. H. Application of the chlorate BOD procedure to routine measurement of wastewater strength. J. Wat. Pollut. Cont. Fed.38, 1350–1362 (1966). CAS Google Scholar
Hackenthal, E., Mannheim, W., Hackenthal, R. & Becher, R. Die reduktion von perchlorat durch bakterien. I. Untersucungen an intaken zellen. Biochem. Pharmacol.13, 195–206 (1964). ArticleCASPubMed Google Scholar
Hackenthal, E. Die reduktion von perchlorat durch bacterien. II. Die identitat der nitratreduktase und des perchlorat reduzierenden enzyms aus B. cereus. Biochem. Pharm.14, 1313–1324 (1965). ArticleCASPubMed Google Scholar
de Groot, G. N. & Stouthamer, A. H. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate resistant mutants. Arch. Microbiol.66, 220–233 (1969). CAS Google Scholar
Roldan, M. D., Reyes, F., Moreno-Vivian, C. & Castillo, F. Chlorate and nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Curr. Microbiol.29, 241–245 (1994). ArticleCAS Google Scholar
Stewart, V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev.52, 190–232 (1988). CASPubMedPubMed Central Google Scholar
Neidhardt, F. C. et al. (eds) Escherichia coli and Salmonella — Cellular and Molecular Biology (ASM Press, Washington DC, 1996). Google Scholar
Coates, J. D. et al. The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol.65 5234–5241 (1999). The first demonstration of the diversity and ubiquitous nature of bacteria capable of microbial (per)chlorate reduction CASPubMedPubMed Central Google Scholar
Bruce, R. A., Achenbach, L. A. & Coates, J. D. Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ. Microbiol.1, 319–331 (1999). ArticleCASPubMed Google Scholar
Michaelidou, U., Achenbach, L. A. & Coates, J. D. in Perchlorate in the Environment (ed. Urbansky, E. T.) 271–283 (Kluwer Academic/Plenum, New York, 2000). Book Google Scholar
Romanenko, V. I., Korenkov, V. N. & Kuznetsov, S. I. Bacterial decomposition of ammonium perchlorate. Mikrobiologiya45, 204–209 (1976). CAS Google Scholar
Stepanyuk, V. et al. New species of the Acinetobacter genus Acinetobacter thermotoleranticus sp. nov. Mikrobiologiya61, 347–356 (1992). Google Scholar
Malmqvist, A. et al. Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. System. Appl. Microbiol.17, 58–64 (1994). The first complete description of an organism capable of growth on chlorate and not perchlorate. Article Google Scholar
Rikken, G., Kroon, A. & van Ginkel, C. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol.45, 420–426 (1996). One of the seminal papers on microbial perchlorate reduction describing a new isolate and the reductive pathway utilized. ArticleCAS Google Scholar
Coates, J. D. et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature411, 1039–1043 (2001). The first isolation and characterization of an organism of any type capable of anaerobic degradation of benzene. ArticleCASPubMed Google Scholar
Zhang, H. S., Bruns, M. A. & Logan, B. E. Chemolithoautotrophic perchlorate reduction by a novel hydrogen-oxidizing bacterium. Environ. Microbiol.4, 570–576 (2002). ArticleCASPubMed Google Scholar
Herman, D. C. & Frankenberger, W. T. Jr. Bacterial reduction of perchlorate and nitrate in water. J. Environ. Qual.28, 1018–1024 (1999). ArticleCAS Google Scholar
Okeke, B. C., Giblin, T. & Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut.118, 357–363 (2002). ArticleCASPubMed Google Scholar
Waller, A. S., Cox, E. E. & Edwards, E. A. Perchlorate-reducing microorganisms isolated from contaminated sites. Environ. Microbiol.6, 517–527 (2004). ArticleCASPubMed Google Scholar
Coates, J. D., Cole, K. A., Chakraborty, R., O'Connor, S. M. & Achenbach, L. A. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration. Appl. Environ. Microbiol.68, 2445–2452 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chaudhuri, S. K., Lack, J. G. & Coates, J. D. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol.67, 2844–2848 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lack, J. G., Chaudhuri, S. K., Chakraborty, R., Achenbach, L. A. & Coates, J. D. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb. Ecol.43, 424–431 (2002). ArticleCASPubMed Google Scholar
Lack, J. G. et al. Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl. Environ. Microbiol.68, 2704–2710 (2002). ArticleCASPubMedPubMed Central Google Scholar
Achenbach, L. A., Bruce, R. A., Michaelidou, U. & Coates, J. D. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol.51, 527–533 (2001). The original description of the two dominant species of (per)chlorate-reducing species found in the environment. ArticleCASPubMed Google Scholar
Achenbach, L. A. & Coates, J. D. Disparity between bacterial phylogeny and physiology. ASM News66, 714–716 (2000). Google Scholar
Cummings, D. E., Caccavo F. Jr, Spring, S. & Rosenzweig, R. F. Ferribacterium limneticum gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch. Microbiol.171, 183–188 (1999). ArticleCAS Google Scholar
Tan, Z. & Reinhold-Hurek, B. Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int. J. Syst. Evol. Microbiol.53, 1139–1142 (2003). ArticleCASPubMed Google Scholar
Coates, J. D., Bruce, R. A., Patrick, J. A. & Achenbach, L. A. Hydrocarbon bioremediative potential of (per)chlorate-reducing bacteria. Bioremed. J.3, 323–334 (1999). ArticleCAS Google Scholar
Bender, K. S., Rice, M. R., Fugate, W. H., Coates, J. D. & Achenbach, L. A. Metabolic primers for the detection of (per)chlorate-reducing bacteria in the environment. Appl. Environ. Microbiol. (in the press).
Coates, J. D. in Bergey's Manual of Systematic Bacteriology (eds Brenner, D., Krieg, N., Staley, J. & Garrity, G.) (Springer–Verlag, New York, in the press).
Bender, K. S., O'Connor, S. M., Chakraborty, R., Coates, J. D. & Achenbach, L. A. The chlorite dismutase gene of Dechloromonas agitata strain CKB: sequencing, transcriptional analysis and its use as a metabolic probe. Appl. Environ. Microbiol.68, 4820–4826 (2002). The first description of the chlorite dismutase gene from an organism capable of both perchlorate and chlorate reduction. ArticleCASPubMedPubMed Central Google Scholar
Chaudhuri, S. K., O'Connor, S. M., Gustavson, R. L., Achenbach, L. A. & Coates, J. D. Environmental factors that control microbial perchlorate reduction. Appl. Environ. Microbiol.68, 4425–4430 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pollock, J., Achenbach, L. A. & Coates, J. D. Potential for in-situ bioremediation of perchlorate contaminated environments. Appl. Environ. Microbiol. (in the press).
Logan, B. E., Wu, J. & Unz, R. F. Biological perchlorate reduction in high-salinity solutions. Wat. Res.35, 3034–3038 (2001). ArticleCAS Google Scholar
Bruce, R. A. MSc. Thesis (Department of Microbiology, Southern Illinois University, Carbondale, 1999). Google Scholar
Kengen, S. W. M., Rikken, G. B., Hagen, W. R., Van Ginkel, C. G. & Stams, A. J. M. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol.181, 6706–6711 (1999). The first purification and description of the perchlorate reductase enzyme. CASPubMedPubMed Central Google Scholar
van Ginkel, C., Rikken, G., Kroon, A. & Kengen, S. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol.166, 321–326 (1996). The first description of the chlorite dismutase enzyme, which, in reference 41, was subsequently shown to be common to all perchlorate-reducing bacteria. ArticleCASPubMed Google Scholar
Stenklo, K., Thorell, H. D., Bergius, H., Aasa, R. & Nilsson, T. Chlorite dismutase from Ideonella dechloratans. J. Biol. Inorgan. Chem.6, 601–607 (2001). ArticleCAS Google Scholar
O'Connor, S. M. & Coates, J. D. A universal immuno-probe for (per)chlorate-reducing bacteria. Appl. Environ. Microbiol.68, 3108–3113 (2002). The first demonstration of the functional expression and highly conserved nature of the chlorite dismutase of perchlorate-reducing bacteria. ArticleCASPubMedPubMed Central Google Scholar
Thorell, H. D., Karlsson, J., Portelius, E. & Nilsson, T. Cloning, characterisation, and expression of a novel gene encoding chlorite dismutase from Ideonella dechloratans. Biochim. Biophys. Acta1577, 445–451 (2002). The first description of the chlorite dismutase gene from a chlorate-reducing organism. ArticleCASPubMed Google Scholar
Xu, J. L., Trimble, J. J., Steinberg, L. & Logan, B. E. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res.38, 673–680 (2004). ArticleCASPubMed Google Scholar
Bender, K. S., Chakraborty, R., Belchik, S. M., Coates, J. D. & Achenbach, L. A. Sequencing and transcriptional analysis of a perchlorate reductase gene from Dechloromonas agitata. Appl. Environ. Microbiol. (in the press).
Wolterink, A. F. W. M., Jonker, A. B., Kengen, S. W. M. & Stams, A. J. M. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int. J. Syst. Evol. Microbiol.52, 2183–2190 (2002). CASPubMed Google Scholar
Danielsson-Thorell, H., Stenklo, K., Karlsson, J. & Nilsson, T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol.69, 5585–5592 (2003). ArticleCASPubMed Central Google Scholar
Wolterink, A. F. W. M. et al. Characterization of the chlorate reductase from Pseudomonas chloritidismutans. J. Bacteriol.185, 3210–3213 (2003). The first description of the chlorate reductase enzyme. ArticleCASPubMedPubMed Central Google Scholar
Coleman, M. L., Ader, M., Chaudhuri, S. & Coates, J. D. Microbial isotopic fractionation of perchlorate chlorine. Appl. Environ. Microbiol.69, 4997–5000 (2003). The first demonstration that perchlorate-reducing bacteria can fractionate chlorine stable isotopes. ArticleCASPubMedPubMed Central Google Scholar
Woese, C. R. in The Prokaryotes (eds Balows, A., Truper, H. G., Dworkin, M., Harder, W. & Schleifer, K.-H.) 3–18 (Springer–Verlag, New York, 1992). Google Scholar
Coates, J. D. & Achenbach, L. A. in Manual of Environmental Microbiology (eds Hurst, C. J., Knudsen, G. R., McInerney, M. J., Stetzenbach, L. D. & Walter, M. W.) 719–727 (ASM Press, Washington DC, 2001). Google Scholar
Bailey, N. J. L., Krouse, H. R., Evans, C. R. & Rogers, M. A. Alteration of crude oil by waters and bacteria — evidence from geochemical and isotope studies. Am. Assoc. Petrol. Geol. Bull.57, 1276 (1973). CAS Google Scholar
Ku, T. C. W., Walter, L. M., Coleman, M. L., Blake, R. E. & Martini, A. M. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim. Cosmochim. Acta63, 2529–2546 (1999). ArticleCAS Google Scholar
Nissenbaum, A., Presley, B. J. & Kaplan, I. R. Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia, I, Chemical and isotopic changes in major components of interstitial water. Geochim. Cosmochim. Acta36, 1007–1027 (1972). ArticleCAS Google Scholar
Jendrzejewski, N., Eggenkamp, H. G. M. & Coleman, M. L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl. Geochem.16, 1021–1031 (2001). ArticleCAS Google Scholar
Ahad, J. M. E., Lollar, B. S., Edwards, E. A., Slater, G. F. & Sleep, B. E. Carbon isotope fractionation during anaerobic biodegradation of toluene: implications for intrinsic bioremediation. Environ. Sci. Technol.34, 892–896 (2000). ArticleCAS Google Scholar
Cloud, P. E., Friedman, I. & Sesler, F. D. Microbiological fractionation of the hydrogen isotopes. Science127, 1394 (1958). ArticleCAS Google Scholar
Hall, J. A., Kalin, R. M., Larkin, M. J., Allen, C. C. R. & Harper, D. B. Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org. Geochem.30, 801–811 (1999). ArticleCAS Google Scholar
Harrison, A. G. & Thode, H. G. Mechanism of the bacterial fractionation of sulphate from isotope fractionation studies. Faraday Soc. Trans.54, 84 (1957). Article Google Scholar
Krichevsky, M. I., Sesler, F. D., Friedman, I. & Newell, M. Deuterium fractionation during molecular H2 formation in a marine pseudomonad. J. Mar. Biol236, 2520 (1961). CAS Google Scholar
Morasch, B., Richnow, H., Schink, B. & Meckenstock, R. Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl. Environ. Microbiol.67, 4842–4849 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sturchio, N. C., Hatzinger, P. B., Arkins, M., Suh, C. & Heraty, L. Chlorine isotope fractionation during microbial reduction of perchlorate. Environ. Sci. Technol.37, 3859–3863 (2003). ArticleCASPubMed Google Scholar
Reinhold–Hurek, B. & Hurek, T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol.50, 649–659 (2000). ArticlePubMed Google Scholar
Engelhard, M., Hurek, T. & Reinhold–Hurek, B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ. Microbiol.2, 131–141 (2000). ArticleCASPubMed Google Scholar