Wnts and TGFβ in synaptogenesis: old friends signalling at new places (original) (raw)

References

  1. Poo, M. M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci. 2, 24–32 (2001).
    Article CAS Google Scholar
  2. Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19, 1237–1248 (1997). An important early account of the involvement of postsynaptic neurotransmitter receptors in retrograde signalling at Drosophila synapses. This article established that presynaptic transmitter release could be affected by regulating the size of postsynaptic responses.
    Article CAS Google Scholar
  3. Davis, G. W. & Goodman, C. S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998).
    Article CAS Google Scholar
  4. Paradis, S., Sweeney, S. T. & Davis, G. W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–749 (2001).
    Article CAS Google Scholar
  5. Tao, H. W. & Poo, M. Retrograde signaling at central synapses. Proc. Natl Acad. Sci. USA 98, 11009–11015 (2001).
    Article CAS Google Scholar
  6. Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Rev. Neurosci. 2, 791–805. (2001). An excellent review on the initial signals involved in the reorganization of the postsynaptic apparatus at vertebrate cholinergic synapses.
    Article CAS Google Scholar
  7. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).
    Article CAS Google Scholar
  8. Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064 (2001).
    Article CAS Google Scholar
  9. Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30, 399–410 (2001).
    Article CAS Google Scholar
  10. Pun, S. et al. An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles. Neuron 34, 357–370 (2002).
    Article CAS Google Scholar
  11. Smith, M. A. & Hilgenberg, L. G. Agrin in the CNS: a protein in search of a function? Neuroreport 13, 1485–1495 (2002).
    Article CAS Google Scholar
  12. Serpinskaya, A. S., Feng, G., Sanes, J. R. & Craig, A. M. Synapse formation by hippocampal neurons from agrin-deficient mice. Dev. Biol. 205, 65–78 (1999).
    Article CAS Google Scholar
  13. Li, Z., Hilgenberg, L. G., O'Dowd, D. K. & Smith, M. A. Formation of functional synaptic connections between cultured cortical neurons from agrin-deficient mice. J. Neurobiol. 39, 547–557 (1999).
    Article CAS Google Scholar
  14. Ferreira, A. Abnormal synapse formation in agrin-depleted hippocampal neurons. J. Cell Sci. 112, 4729–4738 (1999).
    CAS Google Scholar
  15. Bose, C. M. et al. Agrin controls synaptic differentiation in hippocampal neurons. J. Neurosci. 20, 9086–9095 (2000).
    Article CAS Google Scholar
  16. Gingras, J., Rassadi, S., Cooper, E. & Ferns, M. Agrin plays an organizing role in the formation of sympathetic synapses. J. Cell Biol. 158, 1109–1118 (2002).
    Article CAS Google Scholar
  17. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).
    Article CAS Google Scholar
  18. Hall, A. C., Lucas, F. R. & Salinas, P. C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000). This is the first demonstration that a Wnt family member can act as a retrograde synaptogenic signal at mammalian central synapses.
    Article CAS Google Scholar
  19. Krylova, O. et al. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 35, 1043–1056 (2002). This study demonstrates for the first time that different Wnt family members exhibit tissue specificity in the mammalian central nervous system. Wnt3, but not Wnt7 or other Wnts, was shown to serve as a retrograde signal during formation of specific sensory-motor neuron connections in the mouse spinal cord.
    Article CAS Google Scholar
  20. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002). Using the glutamatergic Drosophila NMJ system, this study provides important in vivo evidence for the involvement of Wnt signalling in an anterograde manner during synapse formation and differentiation.
    Article CAS Google Scholar
  21. Marques, G. et al. The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002). This study identifies Wit as a BMP type II receptor, and suggests a role for Wit in Drosophila NMJ assembly and function. The authors also report convincing evidence that Wit is required presynaptically, implying that its ligand is probably secreted by the postsynaptic muscle surface.
    Article CAS Google Scholar
  22. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558. (2002). This study identifies wit as a gene that positively regulates synaptic growth. The study provides crucial genetic evidence for the involvement of TGFβ signalling at this glutamatergic synapse.
    Article CAS Google Scholar
  23. Sweeney, S. T. & Davis, G. W. Unrestricted synaptic growth in spinster — a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36, 403–416 (2002).
    Article CAS Google Scholar
  24. Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J. P. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell 105, 613–624 (2001).
    Article CAS Google Scholar
  25. Pfeiffer, S., Alexandre, C., Calleja, M. & Vincent, J. P. The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos. Curr. Biol. 10, 321–324 (2000).
    Article CAS Google Scholar
  26. Pfeiffer, S., Ricardo, S., Manneville, J. B., Alexandre, C. & Vincent, J. P. Producing cells retain and recycle Wingless in Drosophila embryos. Curr. Biol. 12, 957–962 (2002).
    Article CAS Google Scholar
  27. Moline, M. M., Southern, C. & Bejsovec, A. Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126, 4375–4384 (1999). This study demonstrates the importance of endocytosis in regulating a normal distribution of Wg across embryonic epithelia. The authors achieved this by generating a transgene that expressed a dominant negative form of the Drosophila dynamin shibire.
    CAS Google Scholar
  28. Dierick, H. & Bejsovec, A. Cellular mechanisms of wingless/Wnt signal transduction. Curr. Top. Dev. Biol. 43, 153–190 (1999).
    Article CAS Google Scholar
  29. Lawrence, P. A. Wingless signalling: more about the Wingless morphogen. Curr. Biol. 11, R638–639 (2001).
    Article CAS Google Scholar
  30. Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).
    Article CAS Google Scholar
  31. Day, S. J. & Lawrence, P. A. Measuring dimensions: the regulation of size and shape. Development 127, 2977–2987 (2001).
    Google Scholar
  32. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol. 1, 169–178 (2000).
    Article CAS Google Scholar
  33. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).
    Article CAS Google Scholar
  34. Theisen, H., Haerry, T. E., O'Connor, M. B. & Marsh, J. L. Developmental territories created by mutual antagonism between Wingless and Decapentaplegic. Development 122, 3939–3948 (1996).
    CAS Google Scholar
  35. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).
    Article CAS Google Scholar
  36. Katoh, M. WNT3-WNT14B and WNT3A-WNT14 gene clusters (Review). Int. J. Mol. Med. 9, 579–584 (2002).
    CAS Google Scholar
  37. Liu, T. et al. G protein signaling from activated rat frizzled-1 to the β-catenin-Lef-Tcf pathway. Science 292, 1718–1722 (2001).
    Article CAS Google Scholar
  38. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).
    Article CAS Google Scholar
  39. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).
    Article CAS Google Scholar
  40. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).
    Article CAS Google Scholar
  41. Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M. & Byers, S. W. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem. 272, 24735–24738 (1997).
    Article CAS Google Scholar
  42. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).
    Article CAS Google Scholar
  43. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol. 3, 628–636 (2001).
    Article CAS Google Scholar
  44. Chan, S. K. & Struhl, G. Evidence that Armadillo transduces Wingless by mediating nuclear export or cytosolic activation of Pangolin. Cell 111, 265–280 (2002).
    Article CAS Google Scholar
  45. Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).
    Article CAS Google Scholar
  46. Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 β phosphorylation. Curr. Biol. 11, 44–49 (2001).
    Article CAS Google Scholar
  47. Lucas, F. R., Goold, R. G., Gordon-Weeks, P. R. & Salinas, P. C. Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J. Cell Sci. 111, 1351–1361 (1998).
    CAS Google Scholar
  48. Conacci-Sorrell, M. E. et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058–2072 (2002).
    Article CAS Google Scholar
  49. Massague, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
    Article CAS Google Scholar
  50. Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241–254 (1995).
    CAS Google Scholar
  51. Savage, C. et al. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc. Natl Acad. Sci. USA 93, 790–794 (1996).
    Article CAS Google Scholar
  52. Newfeld, S. J., Wisotzkey, R. G. & Kumar, S. Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-β family ligands, receptors and Smad signal transducers. Genetics 152, 783–795 (1999).
    CAS Google Scholar
  53. Lorentzon, M., Hoffer, B., Ebendal, T., Olson, L. & Tomac, A. Habrec1, a novel serine/threonine kinase TGF-β type I-like receptor, has a specific cellular expression suggesting function in the developing organism and adult brain. Exp. Neurol. 142, 351–360 (1996).
    Article CAS Google Scholar
  54. Mehler, M. F., Mabie, P. C., Zhang, D. & Kessler, J. A. Bone morphogenetic proteins in the nervous system. Trends Neurosci. 20, 309–317 (1997).
    Article CAS Google Scholar
  55. Withers, G. S., Higgins, D., Charette, M. & Banker, G. Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. Eur. J. Neurosci. 12, 106–116 (2000).
    Article CAS Google Scholar
  56. Koh, Y. H., Gramates, L. S. & Budnik, V. Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc. Res. Tech. 49, 14–25 (2000).
    Article CAS Google Scholar
  57. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
    CAS Google Scholar
  58. Tejedor, F. J. et al. Essential role for dlg in synaptic clustering of Shaker K+ channels in vivo. J. Neurosci. 17, 152–159 (1997).
    Article CAS Google Scholar
  59. Thomas, U. et al. Synaptic clustering of the cell adhesion molecule Fasciclin II by Discs-Large and its role in the regulation of presynaptic structure. Neuron 19, 787–799 (1997).
    Article CAS Google Scholar
  60. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G. W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).
    Article CAS Google Scholar
  61. Tsuneizumi, K. et al. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389, 627–631. (1997).
    Article CAS Google Scholar
  62. Inoue, H. et al. Interplay of signal mediators of Decapentaplegic (Dpp): molecular characterization of Mothers against dpp, Medea, and Daughters against dpp. Mol. Biol. Cell 9, 2145–2156 (1998).
    Article CAS Google Scholar
  63. Schuman, E. M. Synapse specificity and long-term information storage. Neuron 18, 339–342 (1997).
    Article CAS Google Scholar
  64. Zhang, F., Endo, S., Cleary, L. J., Eskin, A. & Byrne, J. H. Role of transforming growth factor-β in long-term synaptic facilitation in Aplysia. Science 275, 1318–1320 (1997).
    Article CAS Google Scholar
  65. Mayford, M. & Kandel, E. R. Genetic approaches to memory storage. Trends Genet. 15, 463–470 (1999).
    Article CAS Google Scholar
  66. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).
    Article CAS Google Scholar
  67. Wainwright, M. L., Zhang, H., Byrne, J. H. & Cleary, L. J. Localized neuronal outgrowth induced by long-term sensitization training in aplysia. J. Neurosci. 22, 4132–4141 (2002).
    Article CAS Google Scholar
  68. Liu, Q. R. et al. A developmental gene (Tolloid/BMP-1) is regulated in Aplysia neurons by treatments that induce long-term sensitization. J. Neurosci. 17, 755–764 (1997).
    Article CAS Google Scholar
  69. Chin, J., Angers, A., Cleary, L. J., Eskin, A. & Byrne, J. H. Transforming growth factor β1 alters synapsin distribution and modulates synaptic depression in Aplysia. J. Neurosci. 22, RC220 (2002).
    Article CAS Google Scholar

Download references