Wnts and TGFβ in synaptogenesis: old friends signalling at new places (original) (raw)
References
Poo, M. M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci.2, 24–32 (2001). ArticleCAS Google Scholar
Petersen, S. A., Fetter, R. D., Noordermeer, J. N., Goodman, C. S. & DiAntonio, A. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron19, 1237–1248 (1997). An important early account of the involvement of postsynaptic neurotransmitter receptors in retrograde signalling atDrosophilasynapses. This article established that presynaptic transmitter release could be affected by regulating the size of postsynaptic responses. ArticleCAS Google Scholar
Davis, G. W. & Goodman, C. S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature392, 82–86 (1998). ArticleCAS Google Scholar
Paradis, S., Sweeney, S. T. & Davis, G. W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron30, 737–749 (2001). ArticleCAS Google Scholar
Tao, H. W. & Poo, M. Retrograde signaling at central synapses. Proc. Natl Acad. Sci. USA98, 11009–11015 (2001). ArticleCAS Google Scholar
Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Rev. Neurosci.2, 791–805. (2001). An excellent review on the initial signals involved in the reorganization of the postsynaptic apparatus at vertebrate cholinergic synapses. ArticleCAS Google Scholar
Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell85, 525–535 (1996). ArticleCAS Google Scholar
Lin, W. et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature410, 1057–1064 (2001). ArticleCAS Google Scholar
Yang, X. et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron30, 399–410 (2001). ArticleCAS Google Scholar
Pun, S. et al. An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles. Neuron34, 357–370 (2002). ArticleCAS Google Scholar
Smith, M. A. & Hilgenberg, L. G. Agrin in the CNS: a protein in search of a function? Neuroreport13, 1485–1495 (2002). ArticleCAS Google Scholar
Serpinskaya, A. S., Feng, G., Sanes, J. R. & Craig, A. M. Synapse formation by hippocampal neurons from agrin-deficient mice. Dev. Biol.205, 65–78 (1999). ArticleCAS Google Scholar
Li, Z., Hilgenberg, L. G., O'Dowd, D. K. & Smith, M. A. Formation of functional synaptic connections between cultured cortical neurons from agrin-deficient mice. J. Neurobiol.39, 547–557 (1999). ArticleCAS Google Scholar
Ferreira, A. Abnormal synapse formation in agrin-depleted hippocampal neurons. J. Cell Sci.112, 4729–4738 (1999). CAS Google Scholar
Bose, C. M. et al. Agrin controls synaptic differentiation in hippocampal neurons. J. Neurosci.20, 9086–9095 (2000). ArticleCAS Google Scholar
Gingras, J., Rassadi, S., Cooper, E. & Ferns, M. Agrin plays an organizing role in the formation of sympathetic synapses. J. Cell Biol.158, 1109–1118 (2002). ArticleCAS Google Scholar
Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell103, 945–956 (2000). ArticleCAS Google Scholar
Hall, A. C., Lucas, F. R. & Salinas, P. C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell100, 525–535 (2000). This is the first demonstration that a Wnt family member can act as a retrograde synaptogenic signal at mammalian central synapses. ArticleCAS Google Scholar
Krylova, O. et al. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron35, 1043–1056 (2002). This study demonstrates for the first time that different Wnt family members exhibit tissue specificity in the mammalian central nervous system. Wnt3, but not Wnt7 or other Wnts, was shown to serve as a retrograde signal during formation of specific sensory-motor neuron connections in the mouse spinal cord. ArticleCAS Google Scholar
Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell111, 319–330 (2002). Using the glutamatergicDrosophilaNMJ system, this study provides importantin vivoevidence for the involvement of Wnt signalling in an anterograde manner during synapse formation and differentiation. ArticleCAS Google Scholar
Marques, G. et al. The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron33, 529–543 (2002). This study identifies Wit as a BMP type II receptor, and suggests a role for Wit inDrosophilaNMJ assembly and function. The authors also report convincing evidence that Wit is required presynaptically, implying that its ligand is probably secreted by the postsynaptic muscle surface. ArticleCAS Google Scholar
Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron33, 545–558. (2002). This study identifieswitas a gene that positively regulates synaptic growth. The study provides crucial genetic evidence for the involvement of TGFβ signalling at this glutamatergic synapse. ArticleCAS Google Scholar
Sweeney, S. T. & Davis, G. W. Unrestricted synaptic growth in spinster — a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron36, 403–416 (2002). ArticleCAS Google Scholar
Dubois, L., Lecourtois, M., Alexandre, C., Hirst, E. & Vincent, J. P. Regulated endocytic routing modulates wingless signaling in Drosophila embryos. Cell105, 613–624 (2001). ArticleCAS Google Scholar
Pfeiffer, S., Alexandre, C., Calleja, M. & Vincent, J. P. The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos. Curr. Biol.10, 321–324 (2000). ArticleCAS Google Scholar
Pfeiffer, S., Ricardo, S., Manneville, J. B., Alexandre, C. & Vincent, J. P. Producing cells retain and recycle Wingless in Drosophila embryos. Curr. Biol.12, 957–962 (2002). ArticleCAS Google Scholar
Moline, M. M., Southern, C. & Bejsovec, A. Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo. Development126, 4375–4384 (1999). This study demonstrates the importance of endocytosis in regulating a normal distribution of Wg across embryonic epithelia. The authors achieved this by generating a transgene that expressed a dominant negative form of theDrosophiladynaminshibire. CAS Google Scholar
Dierick, H. & Bejsovec, A. Cellular mechanisms of wingless/Wnt signal transduction. Curr. Top. Dev. Biol.43, 153–190 (1999). ArticleCAS Google Scholar
Lawrence, P. A. Wingless signalling: more about the Wingless morphogen. Curr. Biol.11, R638–639 (2001). ArticleCAS Google Scholar
Cadigan, K. M., Fish, M. P., Rulifson, E. J. & Nusse, R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell93, 767–777 (1998). ArticleCAS Google Scholar
Day, S. J. & Lawrence, P. A. Measuring dimensions: the regulation of size and shape. Development127, 2977–2987 (2001). Google Scholar
Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell Biol.1, 169–178 (2000). ArticleCAS Google Scholar
Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol.14, 59–88 (1998). ArticleCAS Google Scholar
Theisen, H., Haerry, T. E., O'Connor, M. B. & Marsh, J. L. Developmental territories created by mutual antagonism between Wingless and Decapentaplegic. Development122, 3939–3948 (1996). CAS Google Scholar
Katoh, M. WNT3-WNT14B and WNT3A-WNT14 gene clusters (Review). Int. J. Mol. Med.9, 579–584 (2002). CAS Google Scholar
Liu, T. et al. G protein signaling from activated rat frizzled-1 to the β-catenin-Lef-Tcf pathway. Science292, 1718–1722 (2001). ArticleCAS Google Scholar
Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature407, 527–530 (2000). ArticleCAS Google Scholar
Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature407, 530–535 (2000). ArticleCAS Google Scholar
Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J.16, 3797–3804 (1997). ArticleCAS Google Scholar
Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M. & Byers, S. W. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem.272, 24735–24738 (1997). ArticleCAS Google Scholar
Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J.18, 2401–2410 (1999). ArticleCAS Google Scholar
Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol.3, 628–636 (2001). ArticleCAS Google Scholar
Chan, S. K. & Struhl, G. Evidence that Armadillo transduces Wingless by mediating nuclear export or cytosolic activation of Pangolin. Cell111, 265–280 (2002). ArticleCAS Google Scholar
Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol.134, 165–179 (1996). ArticleCAS Google Scholar
Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 β phosphorylation. Curr. Biol.11, 44–49 (2001). ArticleCAS Google Scholar
Lucas, F. R., Goold, R. G., Gordon-Weeks, P. R. & Salinas, P. C. Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J. Cell Sci.111, 1351–1361 (1998). CAS Google Scholar
Conacci-Sorrell, M. E. et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev.16, 2058–2072 (2002). ArticleCAS Google Scholar
Massague, J. TGF-β signal transduction. Annu. Rev. Biochem.67, 753–791 (1998). ArticleCAS Google Scholar
Raftery, L. A., Twombly, V., Wharton, K. & Gelbart, W. M. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics139, 241–254 (1995). CAS Google Scholar
Savage, C. et al. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc. Natl Acad. Sci. USA93, 790–794 (1996). ArticleCAS Google Scholar
Newfeld, S. J., Wisotzkey, R. G. & Kumar, S. Molecular evolution of a developmental pathway: phylogenetic analyses of transforming growth factor-β family ligands, receptors and Smad signal transducers. Genetics152, 783–795 (1999). CAS Google Scholar
Lorentzon, M., Hoffer, B., Ebendal, T., Olson, L. & Tomac, A. Habrec1, a novel serine/threonine kinase TGF-β type I-like receptor, has a specific cellular expression suggesting function in the developing organism and adult brain. Exp. Neurol.142, 351–360 (1996). ArticleCAS Google Scholar
Mehler, M. F., Mabie, P. C., Zhang, D. & Kessler, J. A. Bone morphogenetic proteins in the nervous system. Trends Neurosci.20, 309–317 (1997). ArticleCAS Google Scholar
Withers, G. S., Higgins, D., Charette, M. & Banker, G. Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. Eur. J. Neurosci.12, 106–116 (2000). ArticleCAS Google Scholar
Koh, Y. H., Gramates, L. S. & Budnik, V. Drosophila larval neuromuscular junction: molecular components and mechanisms underlying synaptic plasticity. Microsc. Res. Tech.49, 14–25 (2000). ArticleCAS Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CAS Google Scholar
Tejedor, F. J. et al. Essential role for dlg in synaptic clustering of Shaker K+ channels in vivo. J. Neurosci.17, 152–159 (1997). ArticleCAS Google Scholar
Thomas, U. et al. Synaptic clustering of the cell adhesion molecule Fasciclin II by Discs-Large and its role in the regulation of presynaptic structure. Neuron19, 787–799 (1997). ArticleCAS Google Scholar
Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G. W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron26, 371–382 (2000). ArticleCAS Google Scholar
Tsuneizumi, K. et al. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature389, 627–631. (1997). ArticleCAS Google Scholar
Inoue, H. et al. Interplay of signal mediators of Decapentaplegic (Dpp): molecular characterization of Mothers against dpp, Medea, and Daughters against dpp. Mol. Biol. Cell9, 2145–2156 (1998). ArticleCAS Google Scholar
Schuman, E. M. Synapse specificity and long-term information storage. Neuron18, 339–342 (1997). ArticleCAS Google Scholar
Zhang, F., Endo, S., Cleary, L. J., Eskin, A. & Byrne, J. H. Role of transforming growth factor-β in long-term synaptic facilitation in Aplysia. Science275, 1318–1320 (1997). ArticleCAS Google Scholar
Mayford, M. & Kandel, E. R. Genetic approaches to memory storage. Trends Genet.15, 463–470 (1999). ArticleCAS Google Scholar
Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol.55, 397–426 (1993). ArticleCAS Google Scholar
Wainwright, M. L., Zhang, H., Byrne, J. H. & Cleary, L. J. Localized neuronal outgrowth induced by long-term sensitization training in aplysia. J. Neurosci.22, 4132–4141 (2002). ArticleCAS Google Scholar
Liu, Q. R. et al. A developmental gene (Tolloid/BMP-1) is regulated in Aplysia neurons by treatments that induce long-term sensitization. J. Neurosci.17, 755–764 (1997). ArticleCAS Google Scholar
Chin, J., Angers, A., Cleary, L. J., Eskin, A. & Byrne, J. H. Transforming growth factor β1 alters synapsin distribution and modulates synaptic depression in Aplysia. J. Neurosci.22, RC220 (2002). ArticleCAS Google Scholar