Half a century of neural prepatterning: the story of a few bristles and many genes (original) (raw)
Stern, C. Two or three bristles. American Scientist42, 213–247 (1954). A seminal genetic study of the pattern of bristles on the notum of Drosophila, which revealed the existence of positional information in a growing epithelium. Google Scholar
García-Bellido, A. & Santamaría, P. Developmental analysis of the achaete–scute system of Drosophila melanogaster. Genetics88, 469–486 (1978). PubMedPubMed Central Google Scholar
García-Bellido, A. Genetic analysis of the achaete–scute system of Drosophila melanogaster. Genetics91, 491–520 (1979). PubMedPubMed Central Google Scholar
Ghysen, A. & Dambly-Chaudière, C. From DNA to form: the achaete–scute complex. Genes Dev.2, 495–501 (1988). This paper proposes that positional information is embodied in spatially restricted combinations of factors that are interpreted by ASC enhancers. ArticleCASPubMed Google Scholar
Ghysen, A. & Dambly-Chaudière, C. Genesis of the Drosophila peripheral nervous system. Trends Genet.5, 251–255 (1989). ArticleCASPubMed Google Scholar
Campuzano, S. & Modolell, J. Patterning of the Drosophila nervous system: the achaete–scute gene complex. Trends Genet.8, 202–207 (1992). ArticleCASPubMed Google Scholar
Romani, S., Campuzano, S., Macagno, E. & Modolell, J. Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev.3, 997–1007 (1989). ArticleCASPubMed Google Scholar
Caudy, M. et al. daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete–scute complex. Cell55, 1061–1067 (1988). ArticleCASPubMed Google Scholar
Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nature Rev. Neurosci.3, 517–530 (2002). ArticleCAS Google Scholar
Campuzano, S. et al. Molecular genetics of the achaete–scute gene complex of D. melanogaster. Cell40, 327–338 (1985). ArticleCASPubMed Google Scholar
Ruiz-Gómez, M. & Modolell, J. Deletion analysis of the achaete–scute locus of D. melanogaster. Genes Dev.1, 1238–1246 (1987). Comparison of DNA lesions and the associated patterns of bristle suppression in sc mutations implied the presence of enhancers that would activate this gene in specific regions of the wing disc. ArticlePubMed Google Scholar
Leyns, L., Dambly-Chaudière, C. & Ghysen, A. Two different sets of cis elements regulate scute to establish two different sensory patterns. Roux's Arch. Dev. Biol.198, 227–232 (1989). Article Google Scholar
Cubas, P., de Celis, J. F., Campuzano, S. & Modolell, J. Proneural clusters of achaete–scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev.5, 996–1008 (1991). ArticleCASPubMed Google Scholar
Skeath, J. B. & Carroll, S. B. Regulation of achaete–scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev.5, 984–995 (1991). References 13 and 14 reveal, at the level of single-cell resolution, the relationship between proneural clusters and the emergence of SOPs. ArticleCASPubMed Google Scholar
Cabrera, C. V., Martinez-Arias, A. & Bate, M. The expression of three members of the achaete–scute gene complex correlates with neuroblast segregation in Drosophila. Cell50, 425–433 (1987). ArticleCASPubMed Google Scholar
Romani, S., Campuzano, S. & Modolell, J. The achaete–scute complex is expressed in neurogenic regions of Drosophila embryos. EMBO J.6, 2085–2092 (1987). ArticleCASPubMedPubMed Central Google Scholar
Skeath, J. B. & Carroll, S. B. Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development114, 939–946 (1992). CASPubMed Google Scholar
Ruiz-Gómez, M. & Ghysen, A. The expression and role of a proneural gene, achaete, in the development of the larval nervous system of Drosophila. EMBO J.12, 1121–1130 (1993). ArticlePubMedPubMed Central Google Scholar
Martínez, C. & Modolell, J. Cross-regulatory interactions between the proneural achaete and scute genes of Drosophila. Science251, 1485–1487 (1991). ArticlePubMed Google Scholar
Skeath, J. B., Panganiban, G., Selegue, J. & Carroll, S. B. Gene regulation on two dimensions: the proneural genes achaete and scute are controlled by combination of axis-patterning genes through a common intergenic control region. Genes Dev.6, 2606–2619 (1992). ArticleCASPubMed Google Scholar
Gómez-Skarmeta, J. L. et al. Cis-regulation of achaete and scute: shared enhancer-like elements drive their coexpression in proneural clusters of the imaginal discs. Genes Dev.9, 1869–1882 (1995). Isolation of ASC prepattern responsive enhancers and demonstration of their ability to activate both theacandscgenes in proneural clusters. ArticlePubMed Google Scholar
García-García, M. J., Ramain, P., Simpson, P. & Modolell, J. Different contributions of pannier and wingless to the patterning of the dorsal mesothorax of Drosophila. Development126, 3523–3532 (1999). Pnr is established as a direct activator of the proneural genesacandscby binding to the notum DC enhancer. PubMed Google Scholar
Sato, A. & Saigo, K. Involvement of pannier and u-shaped in regulating Decapentaplegic-dependent wingless expression in developing Drosophila notum. Mech. Dev.93, 127–138 (2000). ArticleCASPubMed Google Scholar
Tomoyasu, Y., Ueno, N. & Nakamura, M. The Decapentaplegic morphogen gradient regulates the notal wingless expression through induction of pannier and u-shaped in Drosophila. Mech. Dev.96, 37–49 (2000). ArticleCASPubMed Google Scholar
Cubadda, Y. et al. u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during formation of bristles in Drosophila. Genes Dev.11, 3083–3095 (1997). ArticleCASPubMedPubMed Central Google Scholar
Haenlin, M. et al. Transcriptional activity of Pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev.11, 3096–3108 (1997). ArticleCASPubMedPubMed Central Google Scholar
Phillips, R. G. & Whittle, J. R. S. wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development. Development118, 427–438 (1993). References 26 and 27 characterized Ush as a prepattern gene whose product controls by heterodimerization the activity of the transcription factor Pnr. CASPubMed Google Scholar
Tomoyasu, Y., Nakamura, M. & Ueno, N. Role of Dpp signalling in prepattern formation of the dorsocentral mechanosensory organ in Drosophila melanogaster. Development125, 4215–4224 (1998). CASPubMed Google Scholar
Ramain, P. et al. Interactions between Chip and the Achaete/Scute-Daughterless heterodimers are required for Pannier-driven proneural patterning. Mol. Cell6, 781–790 (2000). A molecular mechanism involving the cofactor Chip is proposed to facilitate the interaction between the DC enhancer-bound Pnr and the promoter of the ac gene. ArticleCASPubMed Google Scholar
Gómez-Skarmeta, J. L., Diez del Corral, R., de la Calle-Mustienes, E., Ferrés-Marcó, D. & Modolell, J. araucan and caupolican, two members of the novel Iroquois complex, encode homeoproteins that control proneural and vein forming genes. Cell85, 95–105 (1996). ArticlePubMed Google Scholar
Leyns, L., Gómez-Skarmeta, J. L. & Dambly-Chaudière, C. iroquois: a prepattern gene that controls the formation of bristles on the thorax of Drosophila. Mech. Dev.59, 63–72 (1996). References 30 and 31 show that the iroquois genes are required for proneural gene expression. Direct interaction of Iroquois proteins with an ASC enhancer is necessary for enhancer function. ArticleCASPubMed Google Scholar
Gómez-Skarmeta, J. L., de la Calle-Mustienes, E. & Modolell, J. The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and dowregulates BMP4. Development128, 551–560 (2001). PubMed Google Scholar
Diez del Corral, R., Aroca, P., Gómez-Skarmeta, J. L., Cavodeassi, F. & Modolell, J. The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes Dev.13, 1754–1761 (1999). ArticleCASPubMed Google Scholar
Grillenzoni, N., van Helden, J., Dambly-Chaudière, C. & Ghysen, A. The iroquois complex controls the somatotopy of Drosophila notum mechanosensory projections. Development125, 3563–3569 (1998). CASPubMed Google Scholar
Sato, M., Kojima, T., Michiue, T. & Saigo, K. Bar homeobox genes are latitudinal prepattern genes in the developing Drosophila notum whose expression is regulated by the concerted functions of decapentaplegic and wingless. Development126, 1457–1466 (1999). CASPubMed Google Scholar
de Celis, J. F., Barrio, R. & Kafatos, F. Regulation of the spalt/spalt-related gene complex and its function during sensory organ development in the Drosophila thorax. Development126, 2653–2662 (1999). CASPubMed Google Scholar
Rushlow, C. A. et al. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J.8, 3095–3103 (1989). ArticleCASPubMedPubMed Central Google Scholar
Moscoso del Prado, J. & García-Bellido, A. Genetic regulation of the achaete–scute complex of Drosophila melanogaster. Roux's Arch. Dev. Biol.193, 242–245 (1984). ArticleCAS Google Scholar
Carroll, S. B. & Whyte, J. S. The role of the hairy gene during Drosophila morphogenesis: stripes in imaginal discs. Genes Dev.3, 905–916 (1989). ArticleCAS Google Scholar
Orenic, T. V., Held, L. I., Paddock, S. W. & Carroll, S. B. The spatial organization of epidermal structures: hairy establishes the geometrical pattern of Drosophila leg bristles by delimiting the domains of achaete expression. Development118, 9–20 (1993). CASPubMed Google Scholar
Ohsako, S., Hyer, J., Panganiban, G., Oliver, I. & Caudy, M. Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev.8, 2743–2755 (1994). ArticleCASPubMed Google Scholar
Van Doren M., Bailey, A. M., Esnayra, J., Ede, K. & Posakony, J. W. Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev.8, 2729–2742 (1994). ArticleCASPubMed Google Scholar
Rodríguez, I., Hernández, R., Modolell, J. & Ruiz-Gómez, M. Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. EMBO J.9, 3583–3592 (1990). ArticlePubMedPubMed Central Google Scholar
Botas, J., Moscoso del Prado, J. & García-Bellido, A. Gene-dose titration analysis in the search of trans-regulatory genes in Drosophila. EMBO J.1, 307–310 (1982). ArticleCASPubMedPubMed Central Google Scholar
Campuzano, S. EMC, a negative HLH regulator with multiple functions in Drosophila development. Oncogene20, 8299–8307 (2001). ArticleCASPubMed Google Scholar
Van Doren, M., Powell, P. A., Pasternak, D., Singson, A. & Posakony, J. W. Spatial regulation of proneural gene activity: auto- and cross-activation of achaete is antagonized by extramacrochaetae. Genes Dev.6, 2592–2605 (1992). References 46 and 47 show that emc, an antagonist of proneural function, refines the position of the SOP cells. These cells emerge within sites of minimal expression of emc. ArticleCASPubMed Google Scholar
Rusch, J. & Levine, M. Threshold responses to the dorsal regulatory gradient and subdivision of primary tissue territories in the Drosophila embryo. Curr. Opin. Genet. Dev.6, 416–423 (1996). ArticleCASPubMed Google Scholar
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science284, 770–776 (1999). ArticleCASPubMed Google Scholar
Bhat, K. M. Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays21, 472–485 (1999). ArticleCASPubMed Google Scholar
Jiménez, F. et al. vnd, a gene required for early neurogenesis of Drosophila, encodes a homeodomain protein. EMBO J.14, 3487–3495 (1995). ArticlePubMedPubMed Central Google Scholar
Chu, H., Parras, C., White, K. & Jiménez, F. Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev.12, 3613–3624 (1998). ArticleCASPubMedPubMed Central Google Scholar
McDonald, J. A. et al. Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev.12, 3603–3612 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yagi, Y., Suzuki, T. & Hayashi, S. Interaction between Drosophila EGF receptor and vnd determines three dorsoventral domains of the neuroectoderm. Development125, 3625–3633 (1998). References 52–54 demonstrate the activity of vnd as a prepattern and neural identity gene. CASPubMed Google Scholar
Isshiki, T., Takeichi, M. & Nose, A. The role of the msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. Development124, 3099–3109 (1997). CASPubMed Google Scholar
Weiss, J. B. et al. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev.12, 3591–3602 (1998). ArticleCASPubMedPubMed Central Google Scholar
Skeath, J. B. At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays21, 922–931 (1999). ArticleCASPubMed Google Scholar
Cornell, R. A. & Ohlen, T. V. Vnd/nkx, ind/gsh, and msh/msx: conserved regulators of dorsoventral neural patterning? Curr. Opin. Neurobiol.10, 63–71 (2000). ArticleCASPubMed Google Scholar
Skeath, J. B., Panganiban, G. F. & Carroll, S. B. The ventral nervous system defective gene controls proneural gene expression at two distinct steps during neuroblast formation in Drosophila. Development120, 1517–1524 (1994). CASPubMed Google Scholar
Skeath, J. B. The Drosophila EGF receptor controls the formation and specification of neuroblasts along the dorsal–ventral axis of the Drosophila embryo. Development125, 3301–3312 (1998). CASPubMed Google Scholar
Zhao, G. & Skeath, J. B. The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm. Development129, 1165–1174 (2002). CASPubMed Google Scholar
Buescher, M., Hing, F. S. & Chia, W. Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development129, 4193–4203 (2002). CASPubMed Google Scholar
Overton, P. M., Meadows, L. A., Urban, J. & Russell, S. Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development129, 4219–4228 (2002). CASPubMed Google Scholar
Cremazy, F., Berta, P. & Girard, F. Sox Neuro, a new Drosophila Sox gene expressed in the developing central nervous system. Mech. Dev.93, 215–219 (2000). ArticleCASPubMed Google Scholar
Skeath, J. B. & Carroll, S. B. The achaete–scute complex: generation of cellular pattern and fate within the Drosophila nervous system. FASEB J.8, 714–721 (1994). ArticleCASPubMed Google Scholar
Martín-Bermudo, M. D. et al. Molecular characterization of the lethal of scute genetic function. Development118, 1003–1012 (1993). PubMed Google Scholar
Zhao, C. et al. The activity of the Drosophila morphogenetic protein Bicoid is inhibited by a domain located outside its homeodomain. Development129, 1669–1680 (2002). CASPubMed Google Scholar
Von Ohlen, T. & Doe, C. Q. Convergence of Dorsal, Dpp, and Egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal–ventral columns. Dev. Biol.224, 362–372 (2000). ArticleCASPubMed Google Scholar
Jazwinska, A., Rushlow, C. & Roth, S. The role of brinker in mediating the graded response to Dpp in early Drosophila embryos. Development126, 3323–3334 (1999). CASPubMed Google Scholar
Biehs, B., François, V. & Bier, E. The Drosophila short gastrulation gene prevents Dpp from autoactivating and suppressing neurogenesis in the neuroectoderm. Genes Dev.10, 2922–2934 (1996). ArticleCASPubMed Google Scholar
Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet.1, 20–29 (2000). ArticleCASPubMed Google Scholar
Lee, S. K. & Pfaff, S. L. Transcriptional networks regulating neuronal identity in the developing spinal cord. Nature Neurosci.4, 1183–1191 (2001). ArticleCASPubMed Google Scholar
Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell101, 435–445 (2000). This study shows that the ventral spinal cord is subdivided into different progenitor domains by the combination of different genes that code for homeoproteins. ArticleCASPubMed Google Scholar
Vallstedt, A. et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron31, 743–755 (2001). ArticleCASPubMed Google Scholar
Timmer, J. R., Wang, C. & Niswander, L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix–loop–helix transcription factors. Development129, 2459–2474 (2002). This paper shows that different prepattern and proneural genes that are expressed at dorsal or at intermediate levels of the neural tube are activated, repressed or both by different concentration thresholds of BMP. CASPubMed Google Scholar
Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron31, 773–789 (2001). ArticleCASPubMed Google Scholar
Mizuguchi, R. et al. Combinatorial roles of Olig2 and Neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron31, 757–771 (2001). ArticleCASPubMed Google Scholar
Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol.11, 43–49 (2001). ArticleCASPubMed Google Scholar
Muhr, J., Andersson, E., Persson, M., Jessell, T. M. & Ericson, J. Groucho-mediated transcriptional repression established progenitor cell pattern and neuronal fate in the ventral neural tube. Cell104, 861–873 (2001). This study showed that most of the prepattern factors that subdivide the ventral spinal cord act as repressors through their interaction with the co-repressor Groucho. ArticleCASPubMed Google Scholar
Courey, A. J. & Jia, S. Transcriptional repression: the long and the short of it. Genes Dev.15, 2786–2796 (2001). CASPubMed Google Scholar
Marquardt, T. & Pfaff, S. L. Cracking the transcriptional code for cell specification in the neural tube. Cell106, 651–654 (2001). ArticleCASPubMed Google Scholar
Qiu, M., Shimamura, K., Sussel, L., Chen, S. & Rubenstein, J. L. Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes during vertebrate CNS development. Mech. Dev.72, 77–88 (1998). ArticleCASPubMed Google Scholar
Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature398, 622–627 (1999). ArticleCASPubMed Google Scholar
Pabst, O., Herbrand, H., Takuma, N. & Arnold, H. H. NKX2 gene expression in neuroectoderm but not in mesendodermally derived structures depends on sonic hedgehog in mouse embryos. Dev. Genes Evol.210, 47–50 (2000). ArticleCASPubMed Google Scholar
Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell90, 169–180 (1997). ArticleCASPubMed Google Scholar
Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron25, 317–329 (2000). ArticleCASPubMed Google Scholar
Wijgerde, M., McMahon, J. A., Rule, M. & McMahon, A. P. A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord. Genes Dev.16, 2849–2864 (2002). Clones of smo mutant cells demonstrate that Shh signalling is essential for the expression of ventral prepattern genes, and is also required for the expression of some intermediate genes. The main function of Hedgehog is to counteract Gli3 activity. ArticleCASPubMedPubMed Central Google Scholar
Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev.15, 3059–3087 (2001). ArticleCASPubMed Google Scholar
Park, H. L. et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development127, 1593–1605 (2000). CASPubMed Google Scholar
Persson, M. et al. Dorsal–ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev.16, 2865–2878 (2002). This study showed that Gli3 is required as a repressor for the correct expression of prepattern genes that are expressed at intermediate levels of the spinal cord. ArticleCASPubMedPubMed Central Google Scholar
Litingtung, Y. & Chiang, C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neurosci.3, 979–985 (2000). ArticleCASPubMed Google Scholar
Caspary, T. & Anderson, K. V. Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nature Rev. Neurosci.4, 289–297 (2003). ArticleCAS Google Scholar
Liem, K. F., Tremml, G. & Jessell, T. M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell91, 127–138 (1997). ArticleCASPubMed Google Scholar
Lee, K. J., Mendelsohn, M. & Jessell, T. M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev.12, 3394–3407 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pierani, A., Brenner-Morton, S., Chiang, C. & Jessell, T. M. A sonic hedgehog-independent, retinoic-activated pathway of neurogenesis in the ventral spinal cord. Cell97, 903–915 (1999). ArticleCASPubMed Google Scholar
Mekki-Dauriac, S., Agius, E., Kan, P. & Cochard, P. Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development129, 5117–5130 (2002). CASPubMed Google Scholar
Liem, K. F., Jessell, T. M. & Briscoe, J. Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development127, 4855–4866 (2000). CASPubMed Google Scholar
Patten, I. & Placzek, M. Opponent activities of Shh and BMP signaling during floor plate induction in vivo. Curr. Biol.12, 47–52 (2002). The authors of this paper suggest that, in the spinal cord, BMP signalling from the dorsal ectoderm and roof plate exerts long-range effects and inhibits the expression of Shh-dependent ventral genes. BMP antagonists, secreted from the notochord, interfere with BMP at ventral regions and generate a permissive environment for Shh-mediated induction of ventral identities. ArticleCASPubMed Google Scholar
Muroyama, Y., Fujihara, M., Ikeya, M., Kondoh, H. & Takada, S. Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev.16, 548–553 (2002). This study showed that Wnt signalling from the dorsal roof plate is required, without altering BMP signalling expression, for correct proneural gene expression at the dorsal spinal cord and for the generation of dorsal neurons. ArticleCASPubMedPubMed Central Google Scholar
Gowan, K. et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron31, 219–232 (2001). This work showed that the non-overlapping domains of expression of Ngn1, Math1 and Mash1 in the dorsal spinal cord are defined by cross-repression by these bHLH factors. ArticleCASPubMed Google Scholar
Scardigli, R., Schuurmans, C., Gradwohl, G. & Guillemot, F. Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron31, 203–217 (2001). This paper shows that Ngn2 expression in the neural tube results from the activity of different enhancers that drive expression in distinct progenitor domains. Pax6 is required for the activation of some of these enhancers. ArticleCASPubMed Google Scholar
Blader, P., Plessy, C. & Strähle, U. Multiple regulatory elements with spatially and temporally distinct activities control neurogenin1 expression in primary neurons of the zebrafish embryo. Mech. Dev.120, 211–218 (2003). ArticleCASPubMed Google Scholar
Liu, A. & Joyner, A. L. Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci.24, 869–896 (2001). ArticleCASPubMed Google Scholar
Araki, I. & Nakamura, H. Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fates. Development126, 5127–5135 (1999). CASPubMed Google Scholar
Schwartz, M. et al. Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech. Dev.82, 29–39 (1999). Article Google Scholar
Matsunaga, E., Araki, I. & Nakamura, H. Pax6 defines the dimesencephalic boundary by repressing En1 and Pax2. Development127, 2357–2365 (2000). CASPubMed Google Scholar
Kobayashi, D. et al. Early subdivisions in the neural plate define distinct competence for inductive signals. Development129, 83–93 (2002). The authors of this paper propose that the different brain territories are defined by the mutual repression of Six3 and Irx3, Pax6 and Pax2/En1, and Otx2 and Gbx2. CASPubMed Google Scholar
Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron8, 957–966 (1992). ArticleCASPubMed Google Scholar
Yuasa, J., Hirano, S., Yamagata, M. & Noda, M. Visual projection map specified by topographic expression of transcription factors in the retina. Nature382, 632–635 (1996). ArticleCASPubMed Google Scholar
Gómez-Skarmeta, J. L., de la Calle-Mustienes, E., Modolell, J. & Mayor, R. Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development. Mech. Dev.80, 15–27 (1999). ArticlePubMed Google Scholar
Landmesser, L. T. The acquisition of motoneuron subtype identity and motor circuit formation. Int. J. Dev. Neurosci.19, 175–182 (2001). ArticleCASPubMed Google Scholar
Liu, J. P., Laufer, E. & Jessell, T. M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron32, 997–1012 (2001). This study showed that graded FGF signal, originating in Hensen's node, initiates the expression of most Hox genes in the spinal cord motor neurons, and that Gdf11 and retinoid signals from the paraxial mesoderm later refine the expression domains of these genes. ArticleCASPubMed Google Scholar
Carpenter, E. M., Goddard, J. M., Davis, A. P., Nguyen, T. P. & Capecchi, M. R. Targeted disruption of Hoxd-10 affects mouse hindlimb development. Development124, 4505–4514 (1997). CASPubMed Google Scholar
de la Cruz, C. C., Der-Avakian, A., Spyropoulos, D. D., Tieu, D. D. & Carpenter, E. M. Targeted disruption of Hoxd9 and Hoxd10 alters locomotor behavior, vertebral identity, and peripheral nervous system development. Dev. Biol.216, 595–610 (1999). ArticleCASPubMed Google Scholar
Tiret, L., Le Mouellic, H., Maury, M. & Brulet, P. Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of _Hoxc-8_-deficient mice. Development125, 279–291 (1998). CASPubMed Google Scholar
Bell, E., Wingate, R. J. & Lumsden, A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science284, 2168–2171 (1999). ArticleCASPubMed Google Scholar
Gavalas, A., Davenne, M., Lumsden, A., Chambon, P. & Rijli, F. M. Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development124, 3693–3702 (1997). CASPubMed Google Scholar
Jungbluth, S., Bell, E. & Lumsden, A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development126, 2751–2758 (1999). CASPubMed Google Scholar
Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature384, 630–634 (1996). ArticleCASPubMed Google Scholar
Stern, C. D. Initial patterning of the central nervous system: how many organizers? Nature Rev. Neurosci.2, 92–98 (2001). ArticleCAS Google Scholar
Nieuwkoop, P. D. & Nigtevecht, G. V. Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in Urodeles. J. Embryol. Exp. Morph.2, 175–193 (1954). Google Scholar
Pownall, M. E., Tucker, A. S., Slack, J. M. & Isaacs, H. V. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development122, 3881–3892 (1996). CASPubMed Google Scholar
Bel-Vialar, S., Itasaki, N. & Krumlauf, R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development129, 5103–5115 (2002). CASPubMed Google Scholar
Gavalas, A. & Krumlauf, R. Retinoid signalling and hindbrain patterning. Curr. Opin. Genet. Dev.10, 380–386 (2000). ArticleCASPubMed Google Scholar
Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron21, 39–51 (1998). ArticleCASPubMed Google Scholar
McGrew, L. L., Hoppler, S. & Moon, R. T. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev.69, 105–114 (1997). ArticleCASPubMed Google Scholar
Domingos, P. M. et al. The Wnt/β-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev. Biol.239, 148–160 (2001). ArticleCASPubMed Google Scholar
Nordström, U., Jessell, T. M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nature Neurosci.5, 525–532 (2002). The authors of this paper show that graded Wnt signals, in combination with FGF, act directly on anterior neural cells to promote their progressive differentiation into caudal forebrain, midbrain and hindbrain identities. ArticlePubMed Google Scholar
Kiecker, C. & Niehrs, C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development128, 4189–4201 (2001). CASPubMed Google Scholar
Isaacs, H. V., Pownall, M. E. & Slack, J. M. Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J.17, 3413–3427 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ehrman, L. A. & Yutzey, K. E. Anterior expression of the caudal homologue cCdx-B activates a posterior genetic program in avian embryos. Dev. Dyn.221, 412–421 (2001). ArticleCASPubMed Google Scholar
Prinos, P. et al. Multiple pathways governing Cdx1 expression during murine development. Dev. Biol.239, 257–269 (2001). ArticleCASPubMed Google Scholar
Houle, M., Prinos, P., Iulianella, A., Bouchard, N. & Lohnes, D. Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification. Mol. Cell. Biol.20, 6579–6586 (2000). ArticleCASPubMedPubMed Central Google Scholar
Allan, D. et al. RARγ and Cdx1 interactions in vertebral patterning. Dev. Biol.240, 46–60 (2001). ArticleCASPubMed Google Scholar
Yamaguchi, T. P. Heads or tails: Wnts and anterior–posterior patterning. Curr. Biol.11, R713–R724 (2001). ArticleCASPubMed Google Scholar
Niehrs, C. Head in the WNT: the molecular nature of Spemann's head organizer. Trends Genet.15, 314–319 (1999). ArticleCASPubMed Google Scholar
Foley, A. C., Skromne, I. & Stern, C. D. Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development127, 3839–3854 (2000). CASPubMed Google Scholar
Kudoh, T., Wilson, S. W. & Dawid, I. B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development129, 4335–4346 (2002). CASPubMed Google Scholar
de Roos, K. et al. Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech. Dev.82, 205–211 (1999). ArticleCASPubMed Google Scholar
Fujii, H. et al. Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J.16, 4163–4173 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hollemann, T., Chen, Y., Grunz, H. & Pieler, T. Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J.17, 7361–7372 (1998). ArticleCASPubMedPubMed Central Google Scholar
Strigini, M. & Cohen, S. M. Formation of morphogen gradients in the Drosophila wing. Semin. Cell Dev. Biol.10, 335–344 (1999). ArticleCASPubMed Google Scholar
Klein, T. Wing disc development in the fly: the early stages. Curr. Opin. Genet. Dev.11, 470–475 (2001). ArticleCASPubMed Google Scholar
Couso, J. P., Bate, M. & Martínez-Arias, A. A _wingless_-dependent polar coordinate system in Drosophila imaginal discs. Science259, 484–489 (1993). ArticleCASPubMed Google Scholar
Ng, M., Díaz-Benjumea, F. J., Vincent, J. P., Wu, J. & Cohen, S. M. Specification of the wing by localized expression of the wingless protein. Nature381, 316–318 (1996). ArticleCASPubMed Google Scholar
Wu, J. & Cohen, S. M. Repression of Teashirt marks the initiation of wing development. Development129, 2411–2418 (2002). CASPubMed Google Scholar
Wang, S. H., Simcox, A. & Campbell, G. Dual role for epidermal growth factor receptor signaling in early wing disc development. Genes Dev.14, 2271–2276 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zecca, M. & Struhl, G. Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development129, 1357–1368 (2002). CASPubMed Google Scholar
Zecca, M. & Struhl, G. Control of growth and patterning of the Drosophila wing imaginal disc by EGFR-mediated signaling. Development129, 1369–1376 (2002). CASPubMed Google Scholar
Cavodeassi, F., Rodríguez, I. & Modolell, J. Dpp signalling is a key effector of the wing–body wall subdivision of the Drosophila mesothorax. Development129, 3815–3823 (2002). CASPubMed Google Scholar
Calleja, M. et al. Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development127, 3971–3980 (2000). CASPubMed Google Scholar
Calleja, M. et al. How to pattern an epithelium: lessons from achaete–scute regulation on the notum of Drosophila. Gene292, 1–12 (2002). ArticleCASPubMed Google Scholar
Gradwohl, G., Fode, C. & Guillemot, F. Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors. Dev. Biol.180, 227–241 (1996). ArticleCASPubMed Google Scholar
Sommer, L., Ma, Q. & Anderson, D. J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci.8, 221–241 (1996). ArticleCASPubMed Google Scholar
Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science274, 1115–1123 (1996). ArticleCASPubMed Google Scholar
Helms, A. W., Abney, A. L., Ben-Arie, N., Zoghbi, H. Y. & Johnson, J. E. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development127, 1185–1196 (2000). CASPubMed Google Scholar
Bermingham, N. A. et al. Proprioceptor pathway development is dependent on Math1. Neuron30, 411–422 (2001). ArticleCASPubMed Google Scholar