Oxidative stress in neurodegeneration: cause or consequence? (original) (raw)
Hensley, K. et al. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J. Neurosci.18, 8126–8132 (1998). ArticleCASPubMed Google Scholar
Butterfield, D.A., Castegna, A., Lauderback, C.M. & Drake, J. Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol. Aging23, 655–664 (2002). ArticlePubMed Google Scholar
Dexter, D.T. et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem.52, 381–389 (1989). ArticleCASPubMed Google Scholar
Pedersen, W.A. et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol.44, 819–824 (1998). ArticleCASPubMed Google Scholar
Beal, M.F. et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol.42, 644–654 (1997). ArticleCASPubMed Google Scholar
Smith, M.A., Richey Harris, P.L., Sayre, L.M., Beckman, J.S. & Perry, G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci.17, 2653–2657 (1997). ArticleCASPubMed Google Scholar
Good, P.F., Hsu, A., Werner, P., Perl, D.P. & Olanow, C.W. Protein nitration in Parkinson's disease. J. Neuropathol. Exp. Neurol.57, 338–342 (1998). ArticleCASPubMed Google Scholar
Aoyama, K. et al. Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann. Neurol.47, 524–527 (2000). ArticleCASPubMed Google Scholar
Giasson, B.I. et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science290, 985–989 (2000). ArticleCASPubMed Google Scholar
Giasson, B.I. et al. A panel of epitope-specific antibodies detects protein domains distributed throughout human α-synuclein in Lewy bodies of Parkinson's disease. J. Neurosci. Res.59, 528–533 (2000). ArticleCASPubMed Google Scholar
Zemlan, F.P., Thienhaus, O.J. & Bosmann, H.B. Superoxide dismutase activity in Alzheimer's disease: possible mechanism for paired helical filament formation. Brain Res.476, 160–162 (1989). ArticleCASPubMed Google Scholar
Pappolla, M.A., Omar, R.A., Kim, K.S. & Robakis, N.K. Immunohistochemical evidence of oxidative stress in Alzheimer's disease. Am. J. Pathol.140, 621–628 (1992). CASPubMedPubMed Central Google Scholar
Gabbita, S.P., Aksenov, M.Y., Lovell, M.A. & Markesbery, W.R. Decrease in peptide methionine sulfoxide reductase in Alzheimer's disease brain. J. Neurochem.73, 1660–1666 (1999). ArticleCASPubMed Google Scholar
Perry, T.L., Godin, D.V. & Hansen, S. Parkinson's disease: a disorder due to nigral glutathione deficiency? Neurosci. Lett.33, 305–310 (1982). ArticleCASPubMed Google Scholar
Perry, TL. & Yong, V.W. Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci. Lett.67, 269–274 (1986). ArticleCASPubMed Google Scholar
Pearce, R.K., Owen, A., Daniel, S., Jenner, P. & Marsden, C.D. Alterations in the distribution of glutathione in the substantia nigra in Parkinson's disease. J. Neural Transm.104, 661–677 (1997). ArticleCASPubMed Google Scholar
Riederer, P. et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem.52, 515–520 (1989). ArticleCASPubMed Google Scholar
Sofic, E., Paulus, W., Jellinger, K., Riederer, P. & Youdim, M.B. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J. Neurochem.56, 978–982 (1991). ArticleCASPubMed Google Scholar
Jellinger, K.A. et al. Iron and ferritin in substantia nigra in Parkinson's disease. Adv. Neurol.60, 267–272 (1993). CASPubMed Google Scholar
Cudkowicz, M.E. et al. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann. Neurol.41, 210–221 (1997). ArticleCASPubMed Google Scholar
Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science264, 1772–1775 (1994). ArticleCASPubMed Google Scholar
Hall, E.D., Andrus, P.K., Oostveen, J.A., Fleck, T.J. & Gurney, M.E. Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J. Neurosci. Res.53, 66–77 (1998). ArticleCASPubMed Google Scholar
Warita, H., Hayashi, T., Murakami, T., Manabe, Y. & Abe, K. Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice. Brain Res. Mol. Brain Res.89, 147–152 (2001). ArticleCASPubMed Google Scholar
Dal Canto, M.C. Comparison of pathological alterations in ALS and a murine transgenic model: pathogenetic implications. Clin. Neurosci.3, 332–337 (1995). PubMed Google Scholar
Zhang, J., Graham, D.G., Montine, T.J. & Ho, Y.S. Enhanced _N_-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase. J. Neuropathol. Exp. Neurol.59, 53–61 (2000). ArticleCASPubMed Google Scholar
Klivenyi, P. et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J. Neurosci.20, 1–7 (2000). ArticleCASPubMed Google Scholar
Przedborski, S. et al. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to _N_-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci.12, 1658–1667 (1992). ArticleCASPubMed Google Scholar
Andreassen, O.A. et al. Mice with a partial deficiency of manganese superoxide dismutase show increased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid, and MPTP. Exp. Neurol.167, 189–195 (2001). ArticleCASPubMed Google Scholar
Klivenyi, P. et al. Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol. Dis.5, 253–258 (1998). ArticleCASPubMed Google Scholar
Klivenyi, P. et al. Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity. Neuroreport11, 1265–1268 (2000). ArticleCASPubMed Google Scholar
Liberatore, G.T. et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat. Med.5, 1403–1409 (1999). ArticleCASPubMed Google Scholar
Dehmer, T., Lindenau, J., Haid, S., Dichgans, J. & Schulz, J.B. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem.74, 2213–2216 (2000). ArticleCASPubMed Google Scholar
Itzhak, Y., Martin, J.L. & Ali, S.F. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase–deficient mice. Synapse34, 305–312 (1999). ArticleCASPubMed Google Scholar
Zhu, S. et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature417, 74–78 (2002). ArticleCASPubMed Google Scholar
Wu, D.C. et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci.22, 1763–1771 (2002). ArticleCASPubMed Google Scholar
Du, Y. et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc. Natl. Acad. Sci. USA98, 14669–14674 (2001). ArticleCASPubMed Google Scholar
Yang, L. et al. Minocycline enhances MPTP toxicity to dopaminergic neurons. J. Neurosci. Res.74, 278–285 (2003). ArticleCASPubMed Google Scholar
Sano, M. et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med.336, 1216–1222 (1997). ArticleCASPubMed Google Scholar
Effects of tocopherol and deprenyl on the progression of disability in early Parkinson's disease. The Parkinson Study Group. N. Engl. J. Med.328, 176–183 (1993).
Desnuelle, C., Dib, M., Garrel, C. & Favier, A. A double-blind, placebo-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph. Lateral Scler. Other Motor Neuron Disord.2, 9–18 (2001). ArticleCASPubMed Google Scholar
Gurney, M.E., Fleck, T.J., Himes, C.S. & Hall, E.D. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology50, 62–66 (1998). ArticleCASPubMed Google Scholar
Gurney, M.E. et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol.39, 147–157 (1996). ArticleCASPubMed Google Scholar
Kieran, D. et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med.10, 402–405 (2004). ArticleCASPubMed Google Scholar
Winklhofer, K.F., Henn, I.H., Kay-Jackson, P.C., Heller, U. & Tatzelt, J. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J. Biol. Chem.278, 47199–47208 (2003). ArticleCASPubMed Google Scholar
Bruening, W. et al. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem.72, 693–699 (1999). ArticleCASPubMed Google Scholar
Takeuchi, H. et al. Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res.949, 11–22 (2002). ArticleCASPubMed Google Scholar
Warrick, J.M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet.23, 425–428 (1999). ArticleCASPubMed Google Scholar
Manning-Bog, A.B., McCormack, A.L., Purisai, M.G., Bolin, L.M. & Di Monte, D.A. α-Synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci.23, 3095–3099 (2003). ArticleCASPubMed Google Scholar
Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T., Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine–α-synuclein adduct. Science294, 1346–1349 (2001). ArticleCASPubMed Google Scholar
Volles, M.J. & Lansbury, P.T., Jr. Vesicle permeabilization by protofibrillar α-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry41, 4595–4602 (2002). ArticleCASPubMed Google Scholar
Lotharius, J. & Brundin, P. Impaired dopamine storage resulting from α-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum. Mol. Genet.11, 2395–2407 (2002). ArticleCASPubMed Google Scholar
Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med.8, 600–606 (2002). ArticleCASPubMed Google Scholar
Abeliovich, A. et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron25, 239–252 (2000). ArticleCASPubMed Google Scholar
Jha, N., Kumar, M.J., Boonplueang, R. & Andersen, J.K. Glutathione decreases in dopaminergic PC12 cells interfere with the ubiquitin protein degradation pathway: relevance for Parkinson's disease? J. Neurochem.80, 555–561 (2002). ArticleCASPubMed Google Scholar
Friguet, B. & Szweda, L.I. Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett.405, 21–25 (1997). ArticleCASPubMed Google Scholar
Okada, K. et al. 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J. Biol. Chem.274, 23787–23793 (1999). ArticleCASPubMed Google Scholar
Rakhit, R. et al. Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J. Biol. Chem.279, 15499–15504 (2004). ArticleCASPubMed Google Scholar
Behl, C., Davis, J.B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid-β protein toxicity. Cell77, 817–827 (1994). ArticleCASPubMed Google Scholar
Ostrerova-Golts, N. et al. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci.20, 6048–6054 (2000). ArticleCASPubMed Google Scholar
Hyun, D.H. et al. Effect of wild-type or mutant Parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J. Biol. Chem.277, 28572–28577 (2002). ArticleCASPubMed Google Scholar
Lee, M., Hyun, D., Jenner, P. & Halliwell, B. Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative damage and antioxidant defences: relevance to Down's syndrome and familial amyotrophic lateral sclerosis. J. Neurochem.76, 957–965 (2001). ArticleCASPubMed Google Scholar
Lee, M., Hyun, D.H., Halliwell, B. & Jenner, P. Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and protection by Bcl-2. J. Neurochem.78, 209–220 (2001). ArticleCASPubMed Google Scholar
Kruman, I.I., Pedersen, W.A., Springer, J.E. & Mattson, M.P. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol.160, 28–39 (1999). ArticleCASPubMed Google Scholar
Xie, Z. et al. Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J. Neurosci.22, 3484–3492 (2002). ArticleCASPubMed Google Scholar
McNaught, K.S. & Jenner, P. Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J. Neurochem.73, 2469–2476 (1999). ArticleCASPubMed Google Scholar
Knott, C., Stern, G. & Wilkin, G.P. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci.16, 724–39 (2000). ArticleCASPubMed Google Scholar
Tortarolo, M. et al. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell. Neurosci.23, 180–192 (2003). ArticleCASPubMed Google Scholar
Drachman, D.B. et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol.52, 771–778 (2002). ArticleCASPubMed Google Scholar
Yoshihara, T. et al. Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem.80, 158–167 (2002). ArticleCASPubMed Google Scholar
Marques, C.A. et al. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J. Biol. Chem.278, 28294–28302 (2003). ArticleCASPubMed Google Scholar
Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron35, 1067–1083 (2002). ArticleCASPubMed Google Scholar
Saporito, M.S., Thomas, B.A. & Scott, R.W. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem.75, 1200–1208 (2000). ArticleCASPubMed Google Scholar
Saporito, M.S., Brown, E.M., Miller, M.S. & Carswell, S. CEP-1347/KT-7515, an inhibitor of c-Jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons in vivo. J. Pharmacol. Exp. Ther.288, 421–427 (1999). CASPubMed Google Scholar
Wang, W. et al. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson's disease. Neurosci. Res.48, 195–202 (2004). ArticleCASPubMed Google Scholar
Xia, X.G. et al. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc. Natl. Acad. Sci. USA98, 10433–10438 (2001). ArticleCASPubMed Google Scholar
Trimmer, P.A., Smith, T.S., Jung, A.B. & Bennett, J.P., Jr. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration5, 233–239 (1996). ArticleCASPubMed Google Scholar
Emdadul Haque, M. et al. Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochim. Biophys. Acta1619, 39–52 (2003). ArticleCASPubMed Google Scholar
Canals, S., Casarejos, M.J., de Bernardo, S., Rodriguez-Martin, E. & Mena, M.A. Glutathione depletion switches nitric oxide neurotrophic effects to cell death in midbrain cultures: implications for Parkinson's disease. J. Neurochem.79, 1183–1195 (2001). ArticleCASPubMed Google Scholar
Stokes, A.H. et al. Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis. Brain Res.858, 1–8 (2000). ArticleCASPubMed Google Scholar
Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci.3, 1301–1306 (2000). ArticleCASPubMed Google Scholar
German, D.C., Liang, C.L., Manaye, K.F., Lane, K. & Sonsalla, P.K. Pharmacological inactivation of the vesicular monoamine transporter can enhance 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of midbrain dopaminergic neurons, but not locus coeruleus noradrenergic neurons. Neuroscience101, 1063–1069 (2000). ArticleCASPubMed Google Scholar
Staal, R.G. & Sonsalla, P.K. Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J. Pharmacol. Exp. Ther.293, 336–342 (2000). CASPubMed Google Scholar
Gainetdinov, R.R. et al. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J. Neurochem.70, 1973–1978 (1998). ArticleCASPubMed Google Scholar
Takahashi, N. & Uhl, G. Murine vesicular monoamine transporter 2: molecular cloning and genomic structure. Brain Res. Mol. Brain Res.49, 7–14 (1997). ArticleCASPubMed Google Scholar
Spencer, J.P. et al. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem.71, 2112–2122 (1998). ArticleCASPubMed Google Scholar
Berman, S.B. & Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J. Neurochem.73, 1127–1137 (1999). ArticleCASPubMed Google Scholar
Dexter, D.T. et al. Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann. Neurol.35, 38–44 (1994). ArticleCASPubMed Google Scholar
Jha, N. et al. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease. J. Biol. Chem.275, 26096–26101 (2000). ArticleCASPubMed Google Scholar
Barker, J.E. et al. Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage. Brain Res.716, 118–122 (1996). ArticleCASPubMed Google Scholar
Mattiazzi, M. et al. Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem.277, 29626–29633 (2002). ArticleCAS Google Scholar
Beretta, S. et al. Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by _N_-acetylcysteine. Neurobiol. Dis.13, 213–221 (2003). ArticleCASPubMed Google Scholar
Khan, S.M. et al. Alzheimer's disease cybrids replicate β-amyloid abnormalities through cell death pathways. Ann. Neurol.48, 148–155 (2000). ArticleCASPubMed Google Scholar
Ward, R.J. et al. Brain iron in the ferrocene-loaded rat: its chelation and influence on dopamine metabolism. Biochem. Pharmacol.49, 1821–1826 (1995). ArticleCASPubMed Google Scholar
Connor, J.R. Iron acquisition and expression of iron regulatory proteins in the developing brain: manipulation by ethanol exposure, iron deprivation and cellular dysfunction. Dev. Neurosci.16, 233–247 (1994). ArticleCASPubMed Google Scholar
Kaur, D. et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron37, 899–909 (2003). ArticleCASPubMed Google Scholar
Cherny, R.A. et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice. Neuron30, 665–676 (2001). ArticleCASPubMed Google Scholar
Ritchie, C.W. et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol60, 1685–1691 (2003). ArticlePubMed Google Scholar
Hottinger, A.F., Fine, E.G., Gurney, M.E., Zurn, A.D. & Aebischer, P. The copper chelator D-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur. J. Neurosci.9, 1548–1551 (1997). ArticleCASPubMed Google Scholar
Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science271, 515–518 (1996). ArticleCASPubMed Google Scholar
Yim, M.B. et al. A gain-of-function of an amyotrophic lateral sclerosis–associated Cu,Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in _K_m for hydrogen peroxide. Proc. Natl. Acad. Sci. USA93, 5709–5714 (1996). ArticleCASPubMed Google Scholar
Cudkowicz, M.E. et al. Survival in transgenic ALS mice does not vary with CNS glutathione peroxidase activity. Neurology59, 729–734 (2002). ArticleCASPubMed Google Scholar
Liu, R. et al. Increased mitochondrial antioxidative activity or decreased oxygen free radical propagation prevent mutant _SOD1_-mediated motor neuron cell death and increase amyotrophic lateral sclerosis-like transgenic mouse survival. J. Neurochem.80, 488–500 (2002). ArticleCASPubMed Google Scholar
Lyons, T.J. et al. Mutations in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc. Natl. Acad. Sci. USA93, 12240–12244 (1996). ArticleCASPubMed Google Scholar
Estevez, A.G. et al. Induction of nitric oxide–dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science286, 2498–2500 (1999). ArticleCASPubMed Google Scholar
Alexander, M.D. et al. “True” sporadic ALS associated with a novel SOD-1 mutation. Ann. Neurol.52, 680–683 (2002). ArticleCASPubMed Google Scholar
Subramaniam, J.R. et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat. Neurosci.5, 301–307 (2002). ArticleCASPubMed Google Scholar