Ca2+-activated K+ channels: molecular determinants and function of the SK family (original) (raw)
Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. NY Acad. Sci.868, 233–285 (1999). ArticleCASPubMed Google Scholar
Yellen, G. The voltage-gated potassium channels and their relatives. Nature419, 35–42 (2002). ArticleCASPubMed Google Scholar
Gardos, G. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta30, 653–654 (1958). ArticleCASPubMed Google Scholar
Meech, R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. A42, 493–499 (1972). ArticleCASPubMed Google Scholar
Krnjevic, K. & Lisiewicz, A. Injections of calcium ions into spinal motoneurones. J. Physiol. (Lond.)225, 363–390 (1972). ArticleCAS Google Scholar
Alger, B. E. & Nicoll, R. A. Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science210, 1122–1124 (1980). ArticleCASPubMed Google Scholar
Hotson, J. R. & Prince, D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J. Neurophysiol.43, 409–419 (1980). ArticleCASPubMed Google Scholar
Schwartzkroin, P. A. & Stafstrom, C. E. Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells. Science210, 1125–1126 (1980). ArticleCASPubMed Google Scholar
Blatz, A. L. & Magleby, K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature323, 718–720 (1986). ArticleCASPubMed Google Scholar
Lancaster, B. & Adams, P. R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol.55, 1268–1282 (1986). ArticleCASPubMed Google Scholar
Gutman, G. A. et al. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev.55, 583–586 (2003). ArticleCASPubMed Google Scholar
Kohler, M. et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science273, 1709–1714 (1996). This paper reports the cloning and initial characterization of the SK channels, and was crucial for the further development of research on these channels and the currents that they generate. ArticleCASPubMed Google Scholar
Ishii, T. M. et al. A human intermediate conductance calcium-activated potassium channel. Proc. Natl Acad. Sci. USA94, 11651–11656 (1997). ArticleCASPubMedPubMed Central Google Scholar
Joiner, W. J., Wang, L. Y., Tang, M. D. & Kaczmarek, L. K. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc. Natl Acad. Sci. USA94, 11013–11018 (1997). ArticleCASPubMedPubMed Central Google Scholar
Logsdon, N. J., Kang, J., Togo, J. A., Christian, E. P. & Aiyar, J. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem.272, 32723–32726 (1997). ArticleCASPubMed Google Scholar
Litt, M., LaMorticella, D., Bond, C. T. & Adelman, J. P. Gene structure and chromosome mapping of the human small-conductance calcium-activated potassium channel SK1 gene (KCNN1). Cytogenet. Cell Genet.86, 70–73 (1999). ArticleCASPubMed Google Scholar
Dror, V. et al. hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol. Psychiatry4, 254–260 (1999). ArticleCASPubMed Google Scholar
Shmukler, B. E. et al. Structure and complex transcription pattern of the mouse SK1 K(Ca) channel gene, KCNN1. Biochim. Biophys. Acta1518, 36–46 (2001). ArticleCASPubMed Google Scholar
Zhang, B. M. et al. Calmodulin binding to the C-terminus of the small-conductance Ca2+-activated K+ channel hSK1 is affected by alternative splicing. Biochemistry40, 3189–3195 (2001). ArticleCASPubMed Google Scholar
Tomita, H. et al. Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Mol. Psychiatry8, 524–535 (2003). ArticleCASPubMed Google Scholar
Kolski-Andreaco, A. et al. SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels. J. Biol. Chem.279, 6893–6904 (2004). ArticleCASPubMed Google Scholar
Wittekindt, O. H. et al. An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol. Pharmacol.65, 788–801 (2004). ArticleCASPubMed Google Scholar
Shakkottai, V. G. et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest.113, 582–590 (2004). ArticleCASPubMedPubMed Central Google Scholar
Villalobos, C., Shakkottai, V. G., Chandy, K. G., Michelhaugh, S. K. & Andrade, R. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J. Neurosci.24, 3537–3542 (2004). In this paper, transgenic mice that overexpressed an SK-channel splice variant, and biolistic transfection of brain slices, were used to show that the sIAHPis not generated by SK channels in neocortical neurons. ArticleCASPubMedPubMed Central Google Scholar
Hirschberg, B., Maylie, J., Adelman, J. P. & Marrion, N. V. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol.111, 565–581 (1998). ArticleCASPubMedPubMed Central Google Scholar
Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature395, 503–507 (1998). In this work, CaM was identified as a constitutive SK-channel subunit that is responsible for the Ca2+-dependent activation of the channels. ArticleCASPubMed Google Scholar
Soh, H. & Park, C. S. Inwardly rectifying current–voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biophys. J.80, 2207–2215 (2001). ArticleCASPubMedPubMed Central Google Scholar
Soh, H. & Park, C. S. Localization of divalent cation-binding site in the pore of a small conductance Ca2+-activated K+ channel and its role in determining current-voltage relationship. Biophys. J.83, 2528–2538 (2002). ArticleCASPubMedPubMed Central Google Scholar
Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J.70, 1069–1081 (1996). ArticleCASPubMedPubMed Central Google Scholar
Eilers, J., Callewaert, G., Armstrong, C. & Konnerth, A. Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA92, 10272–10276 (1995). ArticleCASPubMedPubMed Central Google Scholar
Robbins, J., Cloues, R. & Brown, D. A. Intracellular Mg2+ inhibits the IP3-activated IKCa in NG108-15 cells. Why intracellular citrate can be useful for recording IKCa . Pflugers Arch.420, 347–353 (1992). ArticleCASPubMed Google Scholar
Alvarez-Leefmans, F. J., Giraldez, F. & Gamino, S. M. Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can. J. Physiol. Pharmacol.65, 915–925 (1987). ArticleCASPubMed Google Scholar
Fanger, C. M. et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J. Biol. Chem.274, 5746–5754 (1999). ArticleCASPubMed Google Scholar
Keen, J. E. et al. Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci.19, 8830–8838 (1999). ArticleCASPubMedPubMed Central Google Scholar
Picton, C., Klee, C. B. & Cohen, P. Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits. Eur. J. Biochem.111, 553–561 (1980). ArticleCASPubMed Google Scholar
Schumacher, M. A., Rivard, A. F., Bachinger, H. P. & Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature410, 1120–1124 (2001). X-ray crystallography revealed the structure of the CaM-binding region in the SK2 channel in the presence of Ca2+. On the basis of the structural analysis and more biochemical evidence, a model for SK-channel opening was proposed. ArticleCASPubMed Google Scholar
Wissmann, R. et al. A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin. J. Biol. Chem.277, 4558–4564 (2002). ArticleCASPubMed Google Scholar
Schumacher, M. A., Crum, M. & Miller, M. C. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure (Camb.)12, 849–860 (2004). ArticleCAS Google Scholar
Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J.11, 331–340 (1997). ArticleCASPubMed Google Scholar
Saimi, Y. & Kung, C. Calmodulin as an ion channel subunit. Annu. Rev. Physiol.64, 289–311 (2002). ArticleCASPubMed Google Scholar
Liang, H. et al. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron39, 951–960 (2003). ArticleCASPubMed Google Scholar
Bruening-Wright, A., Schumacher, M. A., Adelman, J. P. & Maylie, J. Localization of the activation gate for small conductance Ca2+-activated K+ channels. J. Neurosci.22, 6499–6506 (2002). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron19, 175–184 (1997). ArticlePubMed Google Scholar
Fanger, C. M. et al. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J. Biol. Chem.276, 12249–12256 (2001). ArticleCASPubMed Google Scholar
Miller, M. J. et al. Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem.276, 27753–27756 (2001). ArticleCASPubMed Google Scholar
Khanna, R., Chang, M. C., Joiner, W. J., Kaczmarek, L. K. & Schlichter, L. C. hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J. Biol. Chem.274, 14838–14849 (1999). ArticleCASPubMed Google Scholar
Joiner, W. J., Khanna, R., Schlichter, L. C. & Kaczmarek, L. K. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels. J. Biol. Chem.276, 37980–37985 (2001). CASPubMed Google Scholar
Lee, W. S., Ngo-Anh, T. J., Bruening-Wright, A., Maylie, J. & Adelman, J. P. Small conductance Ca2+-activated K+ channels and calmodulin: cell surface expression and gating. J. Biol. Chem.278, 25940–25946 (2003). ArticleCASPubMed Google Scholar
Syme, C. A. et al. Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal lucine zipper. J. Biol. Chem.278, 8476–8486 (2003). ArticleCASPubMed Google Scholar
Ishii, T. M., Maylie, J. & Adelman, J. P. Determinants of apamin and _d_-tubocurarine block in SK potassium channels. J. Biol. Chem.272, 23195–23200 (1997). ArticleCASPubMed Google Scholar
Bowden, S. E., Fletcher, S., Loane, D. J. & Marrion, N. V. Somatic colocalization of rat SK1 and D class (Cav1. 2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J. Neurosci.21, RC175 (2001). ArticleCASPubMedPubMed Central Google Scholar
Benton, D. C. et al. Small conductance Ca2+-activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells. J. Physiol. (Lond.)553, 13–19 (2003). ArticleCAS Google Scholar
D'Hoedt, D., Hirzel, K., Pedarzani, P. & Stocker, M. Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. J. Biol. Chem.279, 12088–12092 (2004). ArticleCASPubMed Google Scholar
Monaghan, A. S. et al. The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J. Biol. Chem.279, 1003–1009 (2004). ArticleCASPubMed Google Scholar
Sailer, C. A. et al. Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. J. Neurosci.22, 9698–9707 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schmid-Antomarchi, H. et al. Molecular properties of the apamin-binding component of the Ca2+-dependent K+ channel. Radiation-inactivation, affinity labelling and solubilization. Eur. J. Biochem.142, 1–6 (1984). ArticleCASPubMed Google Scholar
Seagar, M. J., Labbe-Jullie, C., Granier, C., Van Rietschoten, J. & Couraud, F. Photoaffinity labeling of components of the apamin-sensitive K+ channel in neuronal membranes. J. Biol. Chem.260, 3895–3898 (1985). CASPubMed Google Scholar
Wadsworth, J. D., Doorty, K. B. & Strong, P. N. Comparable 30-kDa apamin binding polypeptides may fulfill equivalent roles within putative subtypes of small conductance Ca2+-activated K+ channels. J. Biol. Chem.269, 18053–18061 (1994). CASPubMed Google Scholar
Stocker, M. & Pedarzani, P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci.15, 476–493 (2000). ArticleCASPubMed Google Scholar
Tacconi, S. et al. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity. Neuroscience102, 209–215 (2001). ArticleCASPubMed Google Scholar
Hosseini, R., Benton, D. C., Dunn, P. M., Jenkinson, D. H. & Moss, G. W. SK3 is an important component of K+ channels mediating the afterhyperpolarization in cultured rat SCG neurones. J. Physiol. (Lond.)535, 323–334 (2001). ArticleCAS Google Scholar
Boettger, M. K. et al. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain125, 252–263 (2002). ArticleCASPubMed Google Scholar
Arnold, S. J. et al. Decreased potassium channel IK1 and its regulator neurotrophin-3 (NT-3) in inflamed human bowel. Neuroreport14, 191–195 (2003). ArticleCASPubMed Google Scholar
Sailer, C. A., Kaufmann, W. A., Marksteiner, J. & Knaus, H. G. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol. Cell. Neurosci.26, 458–469 (2004). ArticleCASPubMed Google Scholar
Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl Acad. Sci. USA96, 4662–4667 (1999). In this paper, the existence of the apamin-sensitive IAHPcurrent in hippocampal pyramidal neurons was shown for the first time. For a long time, it had been believed that only the sIAHPwas present in these neurons. ArticleCASPubMedPubMed Central Google Scholar
Pedarzani, P., Kulik, A., Muller, M., Ballanyi, K. & Stocker, M. Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones. J. Physiol. (Lond.)527, 283–290 (2000). ArticleCAS Google Scholar
Wolfart, J., Neuhoff, H., Franz, O. & Roeper, J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci.21, 3443–3456 (2001). In this paper, patch-clamp recordings, single-cell RT-PCR and immunohistochemistry revealed the function of SK3 channels in midbrain dopaminergic neurons, which is to control the frequency and precision of spontaneous firing. ArticleCASPubMedPubMed Central Google Scholar
Roncarati, R., Di Chio, M., Sava, A., Terstappen, G. C. & Fumagalli, G. Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction. Neuroscience104, 253–262 (2001). ArticleCASPubMed Google Scholar
Obermair, G. J., Kaufmann, W. A., Knaus, H. G. & Flucher, B. E. The small conductance Ca2+-activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons. Eur. J. Neurosci.17, 721–731 (2003). ArticlePubMed Google Scholar
Schwindt, P. C. et al. Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol.59, 424–449 (1988). ArticleCASPubMed Google Scholar
Storm, J. F. An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J. Physiol. (Lond.)409, 171–190 (1989). ArticleCAS Google Scholar
Lancaster, B. & Nicoll, R. A. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. (Lond.)389, 187–203 (1987). ArticleCAS Google Scholar
Kramar, E. A. et al. A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurotrophic factor. J. Neurosci.24, 5151–5161 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sah, P. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci.19, 150–154 (1996). ArticleCASPubMed Google Scholar
Vogalis, F., Storm, J. F. & Lancaster, B. SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur. J. Neurosci.18, 3155–3166 (2003). ArticlePubMed Google Scholar
Stocker, M., Hirzel, K., D'Hoedt, D. & Pedarzani, P. Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon43, 933–949 (2004). ArticleCASPubMed Google Scholar
Gehlert, D. R. & Gackenheimer, S. L. Comparison of the distribution of binding sites for the potassium channel ligands [125I]apamin, [125I]charybdotoxin and [125I]iodoglyburide in the rat brain. Neuroscience52, 191–205 (1993). ArticleCASPubMed Google Scholar
Edgerton, J. R. & Reinhart, P. H. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J. Physiol. (Lond.)548, 53–69 (2003). ArticleCAS Google Scholar
Cingolani, L. A., Gymnopoulos, M., Boccaccio, A., Stocker, M. & Pedarzani, P. Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J. Neurosci.22, 4456–4467 (2002). ArticleCASPubMedPubMed Central Google Scholar
Womack, M. D. & Khodakhah, K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J. Neurosci.23, 2600–2607 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hallworth, N. E., Wilson, C. J. & Bevan, M. D. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J. Neurosci.23, 7525–7542 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bond, C. T. et al. SK knockout mice reveal the identity of calcium-dependent AHP currents. J. Neurosci.24, 5301–5306 (2004). Transgenic mice lacking specific SK-channel subunits were used to analyse the contribution of SK1, SK2 and SK3 to the AHP currents in hippocampal pyramidal neurons. This work shows that SK2 is the main subunit that mediates IAHP, whereas none of the SK-channel subunits is responsible for the generation of sIAHPin these cells. ArticleCASPubMedPubMed Central Google Scholar
Pedarzani, P. et al. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J. Biol. Chem.276, 9762–9769 (2001). ArticleCASPubMed Google Scholar
Zhang, L. & McBain, C. J. Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J. Physiol. (Lond.)488, 661–672 (1995). ArticleCAS Google Scholar
Savic, N., Pedarzani, P. & Sciancalepore, M. Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region. J. Neurophysiol.85, 1986–1997 (2001). ArticleCASPubMed Google Scholar
Loewy, A. D. & Spyer, K. M. in Central Regulation of Autonomic Functions (eds Loewy, A. D. & Spyer, K. M.) 68–87 (Oxford Univ. Press, New York, 1990). Google Scholar
Bosch, M. A., Kelly, M. J. & Ronnekleiv, O. K. Distribution, neuronal colocalization, and 17β-E2 modulation of small conductance calcium-activated K+ channel (SK3) mRNA in the guinea pig brain. Endocrinology143, 1097–1107 (2002). ArticleCASPubMed Google Scholar
Kirkpatrick, K. & Bourque, C. W. Activity dependence and functional role of the apamin-sensitive K+ current in rat supraoptic neurones in vitro. J. Physiol. (Lond.)494, 389–398 (1996). ArticleCAS Google Scholar
Cloues, R. K. & Sather, W. A. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J. Neurosci.23, 1593–1604 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bennett, B. D., Callaway, J. C. & Wilson, C. J. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci.20, 8493–8503 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sourdet, V., Russier, M., Daoudal, G., Ankri, N. & Debanne, D. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J. Neurosci.23, 10238–10248 (2003). This work shows that SK channels are modulated by metabotropic glutamate receptors (mGluR5), thereby contributing to the long-term potentiation of intrinsic excitability that is observed in neocortical neurons. ArticleCASPubMedPubMed Central Google Scholar
Bond, C. T. et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science289, 1942–1946 (2000). ArticleCASPubMed Google Scholar
Catterall, W. A. Structure and regulation of voltage gated Ca2+ channels. Annu. Rev. Cell Dev. Biol.16, 521–555 (2000). ArticleCASPubMed Google Scholar
Sah, P. Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons. Proc. R. Soc. Lond. B260, 105–111 (1995). ArticleCAS Google Scholar
Pineda, J. C., Waters, R. S. & Foehring, R. C. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J. Neurophysiol.79, 2522–2534 (1998). ArticleCASPubMed Google Scholar
Wolfart, J. & Roeper, J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J. Neurosci.22, 3404–3413 (2002). ArticleCASPubMedPubMed Central Google Scholar
Umemiya, M. & Berger, A. J. Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons. J. Neurosci.14, 5652–5660 (1994). ArticleCASPubMedPubMed Central Google Scholar
Williams, S., Serafin, M., Muhlethaler, M. & Bernheim, L. Distinct contributions of high- and low-voltage-activated calcium currents to afterhyperpolarizations in cholinergic nucleus basalis neurons of the guinea pig. J. Neurosci.17, 7307–7315 (1997). ArticleCASPubMedPubMed Central Google Scholar
Marrion, N. V. & Tavalin, S. J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature395, 900–905 (1998). In this study, single-channel analysis showed the close proximity of Ca2+-activated K+ channels and Ca2+channels in acutely dissociated neurons of the hippocampus. ArticleCASPubMed Google Scholar
Hirschberg, B., Maylie, J., Adelman, J. P. & Marrion, N. V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys. J.77, 1905–1913 (1999). ArticleCASPubMedPubMed Central Google Scholar
Oliver, D. et al. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron26, 595–601 (2000). ArticleCASPubMed Google Scholar
Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature394, 78–82 (1998). This paper reports the first example of a slow inhibitory action of synaptically released glutamate in the mammalian brain. In ventral midbrain dopamine neurons, stimulation of a metabotropic glutamate receptor triggered release of intracellular Ca2+and activation of SK channels that hyperpolarized the membrane. ArticleCASPubMed Google Scholar
Akita, T. & Kuba, K. Functional triads consisting of ryanodine receptors, Ca2+ channels, and Ca2+-activated K+ channels in bullfrog sympathetic neurons. Plastic modulation of action potential. J. Gen. Physiol.116, 697–720 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sandler, V. M. & Barbara, J. G. Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons. J. Neurosci.19, 4325–4336 (1999). ArticleCASPubMedPubMed Central Google Scholar
Messier, C. et al. Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes. Brain Res.551, 322–326 (1991). ArticleCASPubMed Google Scholar
Deschaux, O., Bizot, J. C. & Goyffon, M. Apamin improves learning in an object recognition task in rats. Neurosci. Lett.222, 159–162 (1997). ArticleCASPubMed Google Scholar
Deschaux, O. & Bizot, J. C. Effect of apamin, a selective blocker of Ca2+-activated K+-channel, on habituation and passive avoidance responses in rats. Neurosci. Lett.227, 57–60 (1997). ArticleCASPubMed Google Scholar
van der Staay, F. J., Fanelli, R. J., Blokland, A. & Schmidt, B. H. Behavioral effects of apamin, a selective inhibitor of the SKCa-channel, in mice and rats. Neurosci. Biobehav. Rev.23, 1087–1110 (1999). ArticleCASPubMed Google Scholar
Fournier, C., Kourrich, S., Soumireu-Mourat, B. & Mourre, C. Apamin improves reference memory but not procedural memory in rats by blocking small conductance Ca2+-activated K+ channels in an olfactory discrimination task. Behav. Brain Res.121, 81–93 (2001). ArticleCASPubMed Google Scholar
Ikonen, S. & Riekkinen, P., Jr. Effects of apamin on memory processing of hippocampal-lesioned mice. Eur. J. Pharmacol.382, 151–156 (1999). ArticleCASPubMed Google Scholar
Behnisch, T. & Reymann, K. G. Inhibition of apamin-sensitive calcium dependent potassium channels facilitate the induction of long-term potentiation in the CA1 region of rat hippocampus in vitro. Neurosci. Lett.253, 91–94 (1998). ArticleCASPubMed Google Scholar
Norris, C. M., Halpain, S. & Foster, T. C. Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J. Neurosci.18, 3171–3179 (1998). ArticleCASPubMedPubMed Central Google Scholar
Stackman, R. W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci.22, 10163–10171 (2002). ArticleCASPubMedPubMed Central Google Scholar
Blank, T., Nijholt, I., Kye, M. J., Radulovic, J. & Spiess, J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nature Neurosci.6, 911–912 (2003). ArticleCASPubMed Google Scholar
Sah, P. & McLachlan, E. M. Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron7, 257–264 (1991). ArticleCASPubMed Google Scholar
Lasser-Ross, N., Ross, W. N. & Yarom, Y. Activity-dependent [Ca2+]i changes in guinea pig vagal motoneurons: relationship to the slow afterhyperpolarization. J. Neurophysiol.78, 825–834 (1997). ArticleCASPubMed Google Scholar
Sah, P. & Clements, J. D. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons. J. Neurosci.19, 3657–3664 (1999). ArticleCASPubMedPubMed Central Google Scholar
Madison, D. V. & Nicoll, R. A. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature299, 636–638 (1982). ArticleCASPubMed Google Scholar
Madison, D. V. & Nicoll, R. A. Cyclic adenosine 3′,5′-monophosphate mediates β-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J. Physiol. (Lond.)372, 245–259 (1986). ArticleCAS Google Scholar
Pedarzani, P. & Storm, J. F. PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron11, 1023–1035 (1993). ArticleCASPubMed Google Scholar
Haas, H. L. & Rose, G. M. Noradrenaline blocks potassium conductance in rat dentate granule cells in vitro. Neurosci. Lett.78, 171–174 (1987). ArticleCASPubMed Google Scholar
Schwindt, P. C., Spain, W. J. & Crill, W. E. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J. Neurophysiol.67, 216–226 (1992). ArticleCASPubMed Google Scholar
Osmanovic, S. S. & Shefner, S. A. Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro. J. Physiol. (Lond.)469, 89–109 (1993). ArticleCAS Google Scholar
Womble, M. D. & Moises, H. C. Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala. Brain Res.621, 87–96 (1993). ArticleCASPubMed Google Scholar
Faber, E. S. & Sah, P. Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J. Neurosci.22, 1618–1628 (2002). ArticleCASPubMedPubMed Central Google Scholar
Strobaek, D., Jorgensen, T. D., Christophersen, P., Ahring, P. K. & Olesen, S. P. Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. Br. J. Pharmacol.129, 991–999 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shah, M. & Haylett, D. G. The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br. J. Pharmacol.129, 627–630 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lorenzon, N. M. & Foehring, R. C. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol.67, 350–363 (1992). ArticleCASPubMed Google Scholar
Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci.1, 21–30 (2000). ArticleCAS Google Scholar
Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the slo gene family. Neuron37, 765–773 (2003). ArticleCASPubMed Google Scholar
Grunnet, M. et al. Pharmacological modulation of SK3 channels. Neuropharmacology40, 879–887 (2001). ArticleCASPubMed Google Scholar
Finlayson, K. et al. Characterisation of [125I]-apamin binding sites in rat brain membranes with HE293 cells transfected with SK channel subtypes. Neuropharmacology41, 341–350 (2001). ArticleCASPubMed Google Scholar
Chicchi, G. G. et al. Purification and characterization of a unique potent inhibitor of apamin binding from Leiurus-Quinquestriatus-Hebraeus venom. J. Biol. Chem.263, 10192–10197 (1988). CASPubMed Google Scholar
Zerrouk, H., Mansuelle, P., Benslimane, A., Rochat, H. & Martin-Eauclaire, M. F. Characterization of a new leiurotoxin I-like scorpion toxin. PO5 from Androctonus mauretanicus mauretanicus. FEBS Lett.320, 189–192 (1993). ArticleCASPubMed Google Scholar
Pedarzani, P. et al. Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem.277, 46101–46109 (2002). ArticleCASPubMed Google Scholar
Shakkottai, V. G. et al. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem.276, 43145–43151 (2001). ArticleCASPubMed Google Scholar
Liegeois, J. F. et al. Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr. Med. Chem.10, 625–647 (2003). ArticleCASPubMed Google Scholar
Dreixler, J. C. et al. Block of rat brain recombinant SK channels by tricyclic antidepressants and related compounds. Eur. J. Pharmacol.401, 1–7 (2000). ArticleCASPubMed Google Scholar
Terstappen, G. C., Pula, G., Carignani, C., Chen, M. X. & Roncarati, R. Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology40, 772–783 (2001). ArticleCASPubMed Google Scholar
Terstappen, G. C. et al. The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3. Neurosci. Lett.346, 85–88 (2003). ArticleCASPubMed Google Scholar
Syme, C. A., Gerlach, A. C., Singh, A. K. & Devor, D. C. Pharmacological activation of cloned intermediate- and small-conductance Ca2+-activated K+ channels. Am. J. Physiol. Cell Physiol.278, C570–C581 (2000). ArticleCASPubMed Google Scholar
Cao, Y. J., Dreixler, J. C., Couey, J. J. & Houamed, K. M. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur. J. Pharmacol.449, 47–54 (2002). ArticleCASPubMed Google Scholar
Klocker, N., Oliver, D., Ruppersberg, J. P., Knaus, H. G. & Fakler, B. Developmental expression of the small-conductance Ca2+-activated potassium channel SK2 in the rat retina. Mol. Cell. Neurosci.17, 514–520 (2001). ArticleCASPubMed Google Scholar
Wang, G. Y., Olshausen, B. A. & Chalupa, L. M. Differential effects of apamin- and charybdotoxin-sensitive K+ conductances on spontaneous discharge patterns of developing retinal ganglion cells. J. Neurosci.19, 2609–2618 (1999). ArticleCASPubMedPubMed Central Google Scholar
Shatz, C. J. Impulse activity and the patterning of connections during CNS development. Neuron5, 745–756 (1990). ArticleCASPubMed Google Scholar
Glowatzki, E. & Fuchs, P. A. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science288, 2366–2368 (2000). ArticleCASPubMed Google Scholar
Steel, K. P. & Kros, C. J. A genetic approach to understanding auditory function. Nature Genet.27, 143–149 (2001). ArticleCASPubMed Google Scholar