Stress, cognitive impairment and cell adhesion molecules (original) (raw)
McEwen, B. S. Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol. Aging23, 921–939 (2002). ArticleCASPubMed Google Scholar
Roozendaal, B. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology25, 213–238 (1999). Article Google Scholar
McEwen, B. S. Stress and hippocampal plasticity. Annu. Rev. Neurosci.22, 105–122 (1999). A comprehensive review of the pioneer studies in which stress and glucocorticoids were shown to affect hippocampal structure and function. ArticleCASPubMed Google Scholar
Mazure, C. M. in Progress in Psychiatry (ed. Spiegel, D.) 270 (American Psychiatric, Washington DC, 1995). Google Scholar
Heim, C. & Nemeroff, C. B. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol. Psychiatry46, 1509–1522 (1999). ArticleCASPubMed Google Scholar
Lupien, S. J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci.1, 69–73 (1998). This was the first study in humans that described strong correlational evidence between high cortisol concentrations during ageing, and hippocampal atrophy and cognitive deficits. ArticleCASPubMed Google Scholar
Sheline, Y. I. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol. Psychiatry48, 791–800 (2000). ArticleCASPubMed Google Scholar
Molteni, R. et al. Modulation of fibroblast growth factor-2 by stress and corticosteroids: from developmental events to adult brain plasticity. Brain Res. Rev.37, 249–258 (2001). ArticleCASPubMed Google Scholar
Uno, H., Tarara, R., Else, J. G., Suleman, M. A. & Sapolsky, R. M. Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci.9, 1705–1711 (1989). ArticleCASPubMedPubMed Central Google Scholar
Magariños, A. M., McEwen, B. S., Flugge, G. & Fuchs, E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci.16, 3534–3540 (1996). ArticlePubMedPubMed Central Google Scholar
Watanabe, Y., Gould, E., Cameron, H. A., Daniels, D. C. & McEwen, B. S. Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus2, 431–435 (1992). ArticleCASPubMed Google Scholar
Magariños, A. M. & McEwen, B. S. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience69, 89–98 (1995). ArticlePubMed Google Scholar
Magariños, A. M., Verdugo-Garcia, J. M. & McEwen, B. S. Chronic restraint stress alters synaptic terminal structure in hippocampus. Proc. Natl Acad. Sci. USA94, 14002–14008 (1997). ArticlePubMedPubMed Central Google Scholar
Lowy, M. T., Gault, L. & Yamamoto, B. K. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J. Neurochem.61, 1957–1960 (1993). ArticleCASPubMed Google Scholar
Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F. & Paula-Barbosa, M. M. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience97, 253–266 (2000). ArticleCASPubMed Google Scholar
Sandi, C. et al. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur. J. Neurosci.17, 2447–2456 (2003). ArticlePubMed Google Scholar
Stewart, M. G. et al. Stress suppresses and learning induces ultrastructural plasticity in CA3 of rat hippocampus: a 3-dimensional ultrastructural study of thorny excrescences and their post-synaptic densities. Neuroscience (in the press).
Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci.22, 6810–6818 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wellman, C. L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol.49, 245–253 (2001). ArticleCASPubMed Google Scholar
Gould, E. & Tanapat, P. Stress and hippocampal neurogenesis. Biol. Psychiatry46, 1472–1479 (1999). ArticleCASPubMed Google Scholar
Sapolsky, R. M. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol. Psychiatry48, 755–765 (2000). ArticleCASPubMed Google Scholar
Conrad, C. D., LeDoux, J. E., Magarinos, A. M. & McEwen, B. S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci.113, 902–913 (1999). ArticleCASPubMed Google Scholar
Isgor, C., Kabbaj, M., Akil, H. & Watson, S. J. Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus14, 636–648 (2004). ArticlePubMed Google Scholar
Pavlides, C., Nivon, L. G. & McEwen, B. S. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus12, 245–257 (2002). ArticlePubMed Google Scholar
Alfarez, D. N., Joëls, M. & Krugers, H. J. Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. Eur. J. Neurosci.17, 1928–1934 (2003). ArticlePubMed Google Scholar
Gerges, N. Z., Aleisa, A. M., Schwarz, L. A. & Alkadhi, K. A. Reduced basal CaMKII levels in hippocampal CA1 region: possible cause of stress-induced impairment of LTP in chronically stressed rats. Hippocampus14, 402–410 (2004). ArticleCASPubMed Google Scholar
Luine, V. Sex differences in chronic stress effects on memory in rats. Stress5, 205–216 (2002). ArticleCASPubMed Google Scholar
Luine, V., Villegas, M., Martinez, C. & McEwen, B. S. Repeated stress causes reversible impairments of spatial memory performance. Brain Res.639, 167–170 (1994). ArticleCASPubMed Google Scholar
Conrad, C. D., Galea, L. A., Kuroda, Y. & McEwen, B. S. Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatment. Behav. Neurosci.110, 1321–1334 (1996). ArticleCASPubMed Google Scholar
Park, C. R., Campbell, A. M. & Diamond, D. M. Chronic psychosocial stress impairs learning and memory and increases sensitivity to yohimbine in adult rats. Biol. Psychiatry50, 994–1004 (2000). Article Google Scholar
Venero, C. et al. Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience115, 1211–1219 (2002). This study showed that exposing rats to a chronic restraint stress protocol produces marked alterations in the pattern of gene expression forNCAMandL1in the hippocampus and other brain areas. ArticleCASPubMed Google Scholar
Touyarot, K., Venero, C. & Sandi, C. Spatial learning impairment induced by chronic stress is related to individual differences in novelty reactivity: search for neurobiological correlates. Psychoneuroendocrinology29, 290–305 (2004). ArticleCASPubMed Google Scholar
Koo, J. W. et al. The postnatal environment can counteract prenatal effects on cognitive ability, cell proliferation, and synaptic protein expression. FASEB J.17, 1556–1558 (2003). This was the first study to show a marked alteration in the expression of NCAM in adult rats that were submitted to chronic stress during the prenatal and/or early postnatal period. Furthermore, it showed that such alterations were accompanied by impaired learning and were reversed by exposing animals to environmental enrichment. ArticleCASPubMed Google Scholar
Sandi, C., Merino, J. J., Cordero, M. I., Touyarot, K. & Venero, C. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience102, 329–339 (2001). This report showed, for the first time, marked alterations in the expression levels of NCAM, PSA–NCAM and L1 in the hippocampus of rats that had been submitted to chronic stress. ArticleCASPubMed Google Scholar
Cordero, M. I., Kruyt, N. D. & Sandi, C. Modulation of contextual fear conditioning by chronic stress in rats is related to individual differences in behavioral reactivity to novelty. Brain Res.970, 242–245 (2003). ArticleCASPubMed Google Scholar
Wood, G. E., Young, L. T., Reagan, L. P., Chen, B. & McEwen, B. S. Stress-induced structural remodeling in hippocampus: prevention by lithium treatment. Proc. Natl Acad. Sci. USA101, 3973–3978 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wood, G. E., Young, L. T., Reagan, L. P. & McEwen, B. S. Acute and chronic restraint stress alter the incidence of social conflict in male rats. Horm. Behav.43, 205–213 (2003). ArticlePubMed Google Scholar
Schachner, M. Neural recognition molecules and synaptic plasticity. Curr. Opin. Cell Biol.9, 627–634 (1997). ArticleCASPubMed Google Scholar
Kiss, J. Z., Troncoso, E., Djebbara, Z., Vutskits, L. & Muller, D. The role of neural cell adhesion molecules in plasticity and repair. Brain Res. Rev.36, 175–184 (2001). ArticleCASPubMed Google Scholar
Pollerberg, G. E., Burridge, K., Krebs, K. E., Goodman, S. R. & Schachner, M. The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res.250, 227–236 (1987). ArticleCASPubMed Google Scholar
Büttner, B., Kannicht, C., Reutter, W. & Horstkorte, R. The neural cell adhesion molecule is associated with major components of the cytoskeleton. Biochem. Biophys. Res. Commun.310, 967–971 (2003). ArticlePubMedCAS Google Scholar
Leschyns'ka, I., Syntnyk, V., Morrow, J. S. & Schachner, M. Neural cell adhesion molecule (NCAM) association with PKCβ2 via βI spectrin is implicated in NCAM-mediated neurite outgrowth. J. Cell Biol.161, 625–639 (2003). ArticleCAS Google Scholar
Walsh, F. S. & Doherty, P. Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu. Rev. Cell Dev. Biol.13, 425–456 (1997). ArticleCASPubMed Google Scholar
Muller, D. et al. Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc. Natl Acad. Sci. USA97, 4315–4320 (2000). ArticleCASPubMedPubMed Central Google Scholar
Niethammer, P. et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J. Cell Biol.157, 521–532 (2002). ArticleCASPubMedPubMed Central Google Scholar
Paratcha, G., Ledda, F. & Ibanez, C. F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell113, 867–879 (2003). ArticleCASPubMed Google Scholar
Kiselyov, V. V. et al. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure11, 691–701 (2003). This study provides structural evidence for a molecular interaction between NCAM and the FGF receptor. ArticleCASPubMed Google Scholar
Kolkova, K., Pedersen, N., Berezin, V. & Bock, E. Identification of an amino acid sequence motif in the cytoplasmic domain of the NCAM-140 kDa isoform essential for its neuritogenic activity. J. Neurochem.75, 1274–1282 (2000). ArticleCASPubMed Google Scholar
Panicker, A. K., Buhusi, M., Thelen, K. & Maness, P. F. Cellular signalling mechanisms of neural cell adhesion molecules. Front. Biosci.8, D900–D911 (2003). ArticleCASPubMed Google Scholar
Touyarot, K. & Sandi, C. Chronic restraint stress induces an isoform-specific regulation on the neural cell adhesion molecule in the hippocampus. Neural Plast.9, 147–159 (2002). ArticleCASPubMedPubMed Central Google Scholar
Foley, A. G. et al. A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J. Neurochem.74, 2607–2613 (2000). ArticleCASPubMed Google Scholar
Fazeli, M. S., Breen, K. C., Erringtoon, M. L. & Bliss, T. V. P. Increase in extracellular NCAM and amyloid precursor protein following induction of long-term potentiation in the dentate gyrus of anesthetized rats. Neurosci. Lett.169, 77–80 (1994). ArticleCASPubMed Google Scholar
Skladchikova, G., Ronn, L. C., Berezin, V. & Bock, E. Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J. Neurosci. Res.57, 207–218 (1999). ArticleCASPubMed Google Scholar
Endo, A. et al. Proteolysis of neuronal cell adhesion molecule by the tissue plasminogen activator-plasmin system after kainate injection in the mouse hippocampus. Neurosci. Res.33, 1–8 (1999). ArticleCASPubMed Google Scholar
Pham, K., Nacher, J., Hof, P. R. & McEwen, B. S. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci.17, 879–886 (2003). ArticlePubMed Google Scholar
Seki, T. & Arai, Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the gyrus dentatus of the adult rat. J. Neurosci.13, 2351–2369 (1992). Article Google Scholar
Nacher, J., Pham, K., Gil-Fernandez, V. & McEwen, B. S. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience126, 503–509 (2004). ArticleCASPubMed Google Scholar
Woolley, C. S., Gould, E. & McEwen, B. S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res.531, 225–231 (1990). ArticleCASPubMed Google Scholar
Luine, V. N., Spencer, R. L. & McEwen, B. S. Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res.616, 65–70 (1993). ArticleCASPubMed Google Scholar
Sapolsky, R. M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry57, 925–935 (2000). ArticleCASPubMed Google Scholar
Landfield, P., Baskin, R. & Pitler, T. Brain aging correlates: retardation by hormonal-pharmacological treatments. Science214, 581–584 (1981). A pioneering study, which showed that mid-life exposure to glucocorticoids contributes to the deleterious effects on brain structure and function that accompany the ageing process in rats. ArticleCASPubMed Google Scholar
Meaney, M., Aitken, D., Bhatnager, S., van Berkel, C. & Sapolsky, R. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science239, 766–769 (1988). ArticleCASPubMed Google Scholar
Bodnoff, S. R. et al. Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J. Neurosci.15, 61–69 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pavlides, C., Watanabe, Y. & McEwen, B. S. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus3, 183–192 (1993). ArticleCASPubMed Google Scholar
Sandi, C. & Loscertales, M. Opposite effects on NCAM expression in the rat frontal cortex induced by acute vs. chronic corticosterone treatments. Brain Res.828, 127–134 (1999). ArticleCASPubMed Google Scholar
Cremer, H., Chazal, G., Goridis, C. & Represa, A. NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol. Cell. Neurosci.8, 323–335 (1997). ArticleCASPubMed Google Scholar
Cremer, H. et al. Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc. Natl Acad. Sci. USA95, 13242–13247 (1998). ArticleCASPubMedPubMed Central Google Scholar
Jorgensen, O. S. Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodeling. Neurochem. Res.20, 533–547 (1995). ArticleCASPubMed Google Scholar
Feng, Z., Li, L., Ng, P. Y. & Porter, A. G. Neuronal differentiation and protection from nitric oxide-induced apoptosis require c-Jun-dependent expression of NCAM140. Mol. Cell. Biol.22, 5357–5366 (2002). This study provides a mechanism to account for the modulation of alternative splicing of NCAM pre-mRNA and the consequent alteration in the rate of NCAM-140 and NCAM-180 expression. It also implicates NCAM-140 in neuroprotection. ArticleCASPubMedPubMed Central Google Scholar
Muller, D. et al. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron17, 413–422 (1996). ArticleCASPubMed Google Scholar
Holst, B. D. et al. Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM. Proc. Natl Acad. Sci. USA95, 2597–2602 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bukalo, O. et al. Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J. Neurosci.24, 1565–1577 (2004). ArticleCASPubMedPubMed Central Google Scholar
Luthi, A., Laurent, J. P., Figurov, A., Muller, D. & Schachner, M. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature372, 777–779 (1994). ArticlePubMed Google Scholar
Ronn, L. C., Bock, E., Linnemann, D. & Jahnsen, H. NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res.677, 145–151 (1995). ArticleCASPubMed Google Scholar
Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature367, 455–459 (1994). This was the first study in which a NCAM-knockout mouse was developed and found to show important deficits in spatial learning. ArticleCASPubMed Google Scholar
Stork, O. et al. Recovery of emotional behaviour in neural cell adhesion molecule (NCAM) null mutant mice through transgenic expression of NCAM180. Eur. J. Neurosci.12, 3291–3306 (2000). ArticleCASPubMed Google Scholar
Doyle, E., Nolan, P. M., Bell, R. & Regan, C. M. Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J. Neurochem.59, 1570–1573 (1992). This was the first study in which pharmacological interference with NCAM function was found to inhibit memory consolidation processes, implicating NCAM in the mechanisms that mediate the transfer of information into long-term memory. ArticleCASPubMed Google Scholar
Cambon, K., Venero, C., Berezin, V., Bock, E. & Sandi, C. Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience122, 183–191 (2003). ArticleCASPubMed Google Scholar
Arami, S., Jucker, M., Schachner, M. & Welzl, H. The effect of continuous intraventricular infusion of L1 and NCAM antibodies on spatial learning in rats. Behav. Brain Res.81, 81–87 (1996). ArticleCASPubMed Google Scholar
Hartz, B. P., Sohoel, A., Berezin, V., Bock, E. & Scheel-Krüger, J. A synthetic peptide ligand of NCAM affects exploratory behavior and memory in rodents. Pharm. Biochem. Behav.75, 861–867 (2003). ArticleCAS Google Scholar
Stork, O., Welzl, H., Cremer, H. & Schachner, M. Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur. J. Neurosci.9, 1117–1125 (1997). ArticleCASPubMed Google Scholar
Stork, O. et al. Anxiety and increased 5-HT1A receptor response in NCAM null mutant mice. J. Neurobiol.40, 343–355 (1999). ArticleCASPubMed Google Scholar
Bhatnagar, S. & Dallman, M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience84, 1025–1039 (1998). ArticleCASPubMed Google Scholar
Rutishauser, U. Polysialic acid and plasticity of the nervous system. FENS Abstr. 534 (2004).
Rutishauser, U. Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J. Cell Biochem.70, 304–312 (1998). ArticleCASPubMed Google Scholar
Hoffman, K. B., Kessler, M. & Lynch, G. Sialic acid residues indirectly modulate the binding properties of AMPA-type glutamate receptors. Brain Res.753, 309–314 (1997). ArticleCASPubMed Google Scholar
Franceschini, I. et al. Polysialyltransferase ST8Sia II (STX) polysialylates all of the major isoforms of NCAM and facilitates neurite outgrowth. Glycobiology11, 231–239 (2001). ArticleCASPubMed Google Scholar
Domínguez, M. I., Blasco-Ibáñez, J. M., Crespo, C., Marqués-Marí, A. I. & Martínez-Guijarro, F. J. Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res.966, 206–217 (2003). ArticlePubMedCAS Google Scholar
Fox, G. B., Kjøller, C., Murphy, K. J. & Regan, C. M. The modulations of NCAM polysialylation state that follow transient global ischemia are brief on neurons but enduring on glia. J. Neuropathol. Exp. Neurol.60, 132–140 (2001). ArticleCASPubMed Google Scholar
Smith, M. A., Makino, S., Kvetnansky, R. & Post, R. M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci.15, 1768–1777 (1995). ArticleCASPubMedPubMed Central Google Scholar
Vutskits, L. et al. PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur. J. Neurosci.13, 1391–1402 (2001). ArticleCASPubMed Google Scholar
Canger, A. K. & Rutishauser, U. Alteration of neural tissue structure by expression of polysialic acid induced by viral delivery of PST polysialyltransferase. Glycobiology14, 83–93 (2004). ArticleCASPubMed Google Scholar
Mikkonen, M., Soininen, H., Tapiola, T., Alafuzoff, I. & Miettinen, R. Hippocampal plasticity in Alzheimer's disease: changes in highly polysialylated NCAM immunoreactivity in the hippocampal formation. Eur. J. Neurosci.11, 1754–1764 (1999). This report shows evidence in humans that implicates excessive concentrations of PSA–NCAM in neural damage and cognitive dysfunction. ArticleCASPubMed Google Scholar
Mikkonen, M. et al. Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the enthorhinal cortex. Ann. Neurol.44, 923–934 (1998). ArticleCASPubMed Google Scholar
Sandi, C. et al. Modulation of hippocampal NCAM polysialylation and spatial memory consolidation by fear conditioning. Biol. Psychiatry54, 599–607 (2003). ArticleCASPubMed Google Scholar
Murphy, K. J. & Regan, C. M. Contributions of cell adhesion molecules to altered synaptic weightings during memory consolidation. Neurobiol. Learn. Mem.70, 73–81 (1998). ArticleCASPubMed Google Scholar
Theodosis, D. T., Bonhomme, R., Vitiello, S., Rougon, G. & Poulain, D. A. Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J. Neurosci.19, 10228–10236 (1999). ArticleCASPubMedPubMed Central Google Scholar
Brook, G. A. et al. Attempted endogenous tissue repair following experimental spinal cord injury in the rat: involvement of cell adhesion molecules L1 and NCAM? Eur. J. Neurosci.12, 3224–3238 (2000). ArticleCASPubMed Google Scholar
Styren, S. D., Miller, P. D., Lagenaur, C. F. & DeKosky, S. T. Alternate strategies in lesion-induced reactive synaptogenesis: differential expression of L1 in two populations of sprouting axons. Exp. Neurol.131, 165–173 (1995). ArticleCASPubMed Google Scholar
Jucker, M. et al. Expression of the neural adhesion molecule L1 in the deafferented dentate gyrus. Neuroscience75, 703–715 (1996). ArticleCASPubMed Google Scholar
Wolfer, D. P., Mohajeri, H. M., Lipp, H. -P. & Schachner, M. Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. Eur. J. Neurosci.10, 708–717 (1998). ArticleCASPubMed Google Scholar
Venero, C. et al. Water maze learning and forebrain mRNA expression of the neural cell adhesion molecule L1. J. Neurosci. Res.75, 172–181 (2004). ArticleCASPubMed Google Scholar
Law, J. W. S. et al. Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. J. Neurosci.23, 10419–10432 (2003). ArticleCASPubMedPubMed Central Google Scholar
Joëls, M. Modulatory actions of steroid hormones and neuropeptides on electrical activity in brain. Eur. J. Pharmacol.405, 207–216 (2000). ArticlePubMed Google Scholar
Kim, J. J. & Diamond, D. M. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci.3, 453–462 (2002). ArticleCAS Google Scholar
De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joëls, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev.19, 269–301 (1998). CASPubMed Google Scholar
Vreugdenhil, E., de Kloet, E. R., Schaaf, M. & Datson, N. A. Genetic dissection of corticosterone receptor function in the rat hippocampus. Eur. Neuropsychopharmacol.11, 423–430 (2001). ArticleCASPubMed Google Scholar
Datson, N. A., van der Perk, J., de Kloet, E. R. & Vreugdenhil, E. Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur. J. Neurosci.14, 675–689 (2001). This study shows that many hippocampal genes are regulated by corticosteroid receptors. It also implicates cell adhesion molecules as targets of glucocorticoid receptor function. ArticleCASPubMed Google Scholar
Quandt, K., Frech, K., Karas, H., Wingender, E. & Werner, T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res.23, 4878–4884 (1995). ArticleCASPubMedPubMed Central Google Scholar
Simpson, C. S. & Morris, B. J. Regulation of neuronal cell adhesion molecule expression by NF-κB. J. Biol. Chem.275, 16879–16884 (2000). ArticleCASPubMed Google Scholar
Takeuchi, Y. & Fukunaga, F. Differential regulation of NF-κB, SRE and CRE by dopamine D1 and D2 receptors in transfected NG108-15 cells. J. Neurochem.85, 729–739 (2003). ArticleCASPubMed Google Scholar
De Bosscher, K. et al. Glucocorticoid-mediated repression of nuclear factor-κB-dependent transcription involves direct interference with transactivation. Proc. Natl Acad. Sci. USA94, 13504–13509 (1997). ArticleCASPubMedPubMed Central Google Scholar
Colwell, G., Li, B., Forrest, D. & Brackenbury, R. Conserved regulatory elements in the promoter region of the N-CAM gene. Genomics14, 875–882 (1992). ArticleCASPubMed Google Scholar
Karin, M. & Chang, L. AP-1-glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol.169, 447–451 (2001). ArticleCASPubMed Google Scholar
Coughlan, C. M., Seckl, J. R., Fox, D. J., Unsworth, R. & Breen, K. C. Tissue-specific regulation of sialyltransferase activities in the rat by corticosteroids in vivo. Glycobiology6, 15–22 (1996). ArticleCASPubMed Google Scholar
Coughlan, C. M. & Breen, K. C. Glucocorticoid induction of the α2,6 sialyltransferase enzyme in a mouse neural cell line. J. Neurosci. Res.51, 619–626 (1998). ArticleCASPubMed Google Scholar
Georgopoulou, N. & Breen, K. C. Overexpression of the alpha2,6 (N) sialyltransferase enzyme in human and rat neural cell lines is associated with increased expression of the polysialic acid epitope. J. Neurosci. Res.58, 641–651 (1999). ArticleCASPubMed Google Scholar
Rodriguez, J. J. et al. Complex regulation of the expression of the polysialylated form of the neuronal cell adhesion molecule by glucocorticoids in the rat hippocampus. Eur. J. Neurosci.10, 2994–3006 (1998). This paper showed for the first time that the hippocampal expression of PSA–NCAM is under the regulatory control of glucocorticoids. ArticleCASPubMed Google Scholar
Montaron, M. F. et al. Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. Eur. J. Neurosci.18, 3105–3111 (2003). ArticleCASPubMed Google Scholar
Grant, N. J., Claudepierre, T., Aunis, D. & Langley, K. Glucocorticoids and nerve growth factor differentially modulate cell adhesion molecule L1 expression in PC12 cells. J. Neurochem.66, 1400–1408 (1996). ArticleCASPubMed Google Scholar
Krugers, H. J., Koolhaas, J. M., Bohus, B. & Korf, J. A single social stress-experience alters glutamate receptor-binding in rat hippocampal CA3 area. Neurosci. Lett.154, 73–77 (1993). ArticleCASPubMed Google Scholar
Bartanusz, V. et al. Stress-induced changes in messenger RNA levels of _N_-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience66, 247–252 (1995). ArticleCASPubMed Google Scholar
Weiland, N. G., Orchinik, M. & Tanapat, P. Chronic corticosterone treatment induces parallel changes in _N_-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus. Neuroscience78, 653–662 (1997). ArticleCASPubMed Google Scholar
Hoffman, K. B., Murray, B. A., Lynch, G., Munirathinam, S. & Bahr, B. A. Delayed and isoform-specific effect of NMDA exposure on neural cell adhesion molecules in hippocampus. Neurosci. Res.39, 167–173 (2001). ArticleCASPubMed Google Scholar
Nacher, J., Rosell, D. R., Alonso-Llosa, G. & McEwen, B. S. NMDA receptor antagonist treatment induces a long-lasting increase in the number of proliferating cells, PSA-NCAM-immunoreactive granule neurons and radial glia in the adult rat dentate gyrus. Eur. J. Neurosci.13, 512–520 (2001). ArticleCASPubMed Google Scholar
Kole, M. H., Swan, L. & Fuchs, E. The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur. J. Neurosci.16, 807–816 (2002). ArticlePubMed Google Scholar
Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature Neurosci.3, 661–669 (2000). ArticleCASPubMed Google Scholar
Scherer, M., Heller, M. & Schachner, M. Expression of the neural recognition molecule L1 by cultured neural cells is influenced by K+ and the glutamate receptor agonist NMDA. Eur. J. Neurosci.4, 554–562 (1992). ArticlePubMed Google Scholar
Schaaf, M. J. M., Hoetelmans, R. W. M., de Kloet, E. R. & Vreugdenhil, E. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. J. Neurosci. Res.48, 334–341 (1997). ArticleCASPubMed Google Scholar
Doherty, P. & Walsh F. S. CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell. Neurosci.8, 99–111 (1996). ArticleCASPubMed Google Scholar
Trentani, A., Kuipers, S. D., Horst, G. J. T. & Den Boer, J. A. Selective chronic stress-induced in vivo ERK1/2 hyperphosphorylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology? Eur. J. Neurosci.15, 1681–1691 (2002). ArticleCASPubMed Google Scholar
Meller, E. et al. Region-specific effects of acute and repeated restraint stress on the phosphorylation of mitogen-activated protein kinases. Brain Res.979, 57–64 (2003). ArticleCASPubMed Google Scholar
Kuipers, S. D., Trentani, A., Den Boer, J. A. & Ter Horst, G. J. Molecular correlates of impaired prefrontal plasticity in response to chronic stress. J. Neurochem.85, 1312–1323 (2003). ArticleCASPubMed Google Scholar
Lawrence, M. S. & Sapolsky, R. M. Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons. Brain Res.646, 303–306 (1994). ArticleCASPubMed Google Scholar
Nguyen, L., Rigo, J. M., Malgrange, B., Moonen, G. & Belachew, S. Untangling the functional potential of PSA-NCAM-expressing cells in CNS development and brain repair strategies. Curr. Med. Chem.10, 2185–2196 (2003). ArticleCASPubMed Google Scholar
Webb, K. et al. Substrate-bound human recombinant L1 selectively promotes neuronal attachment and outgrowth in the presence of astrocytes and fibroblasts. Biomaterials22, 1017–1028 (2001). ArticleCASPubMed Google Scholar
Berezin, V. & Bock, E. NCAM mimetic peptides: pharmacological and therapeutic potential. J. Mol. Neurosci.22, 33–39 (2004). ArticlePubMed Google Scholar
Cambon, K. et al. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci.24, 4197–4204 (2004). This is the first experimental evidence that facilitating NCAM function by pharmacological means can lead to a potentiation of recently acquired memories. It also shows that the peptide might exert such cognitive effects by facilitating synaptic function. ArticleCASPubMedPubMed Central Google Scholar
Doherty, P., Rimon, G., Mann, D. A. & Walsh, F. S. Alternative splicing of the cytoplasmic domain of neural cell adhesion molecule alters its ability to act as a substrate for neurite outgrowth. J. Neurochem.58, 2338–2341 (1992). ArticleCASPubMed Google Scholar
Herman, J. P. et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrinol.24, 151–180 (2003). A comprehensive review of the neural mechanisms that have vital roles in the fine control of the activation of the hypothalamus-pituitary-adrenocortical axis. ArticleCASPubMed Google Scholar
Yudt, M. R. & Cidlowski, J. A. The glucocorticoid receptor: coding a diversity of proteins and responses through a single gene. Mol. Endocrinol.16, 1719–1726 (2002). ArticleCASPubMed Google Scholar