Stress and the brain: from adaptation to disease (original) (raw)
Selye, H. Syndrome produced by diverse nocuous agents. Nature138, 32 (1936). Google Scholar
Levine, S. & Ursin, H. in Stress Neurobiology and Neuroendocrinology (eds Brown, M. R. & Koob, G. F.) 3–21 (Rivier Marcel Dekker, Inc., New York, 1991). Google Scholar
Chrousos, G. P. & Gold, P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA267, 1244–1252 (1992). CASPubMed Google Scholar
De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joëls, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev.19, 269–301 (1998). CASPubMed Google Scholar
McEwen, B. in Encyclopedia of Stress Vol. 3 (ed. Fink, G.) 508–509 (Academic, San Diego, USA, 2000). Google Scholar
Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev.21, 55–89 (2000). CASPubMed Google Scholar
Tausk, M. Das Hormon: Hat die Nebennierrinde tatsächlich eine Verteidigungsfunktion? Vol. 3 (Organon International BV, Oss, The Netherlands, 1952). Google Scholar
McEwen, B. S. Mood disorders and allostatic load. Biol. Psychiatry54, 200–207 (2003). PubMed Google Scholar
Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology23, 477–501 (2000). CASPubMed Google Scholar
Van Praag, H. M., de Kloet, E. R. & van Os, J. Stress, the Brain and Depression (Cambridge Univ. Press, 2004). Google Scholar
Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med.346, 108–114 (2002). CASPubMed Google Scholar
Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology117, 2505–2511 (1985). The first account of two distinct nuclear receptor systems that bind naturally occurring glucocorticoids with a tenfold difference in affinity. CASPubMed Google Scholar
Arriza, J. L., Simerly, R. B., Swanson, L. W. & Evans, R. M. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron1, 887–900 (1988). CASPubMed Google Scholar
Young, E. A., Abelson, J. & Lightman, S. L. Cortisol pulsatility and its role in stress regulation and health. Front. Neuroendocrinol.25, 69–76 (2004). CASPubMed Google Scholar
Kitchener, P., Di Blasi, F., Borrelli, E. & Piazza, P. V. Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle. Eur. J. Neurosci.19, 1837–1846 (2004). PubMed Google Scholar
Miklos, I. H. & Kovacs, K. J. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience113, 581–592 (2002). CASPubMed Google Scholar
Herman, J. P. et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front. Neuroendocrinol.24, 151–180 (2003). CASPubMed Google Scholar
Patel, P. D. et al. Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. J. Psychiatr. Res.34, 383–392 (2000). CASPubMed Google Scholar
Trapp, T., Rupprecht, R., Castren, M., Reul, J. M. & Holsboer, F. Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron13, 1457–1462 (1994). CASPubMed Google Scholar
Nishi, M., Ogawa, H., Ito, T., Matsuda, K. I. & Kawata, M. Dynamic changes in subcellular localization of mineralocorticoid receptor in living cells: in comparison with glucocorticoid receptor using dual-color labeling with green fluorescent protein spectral variants. Mol. Endocrinol.15, 1077–1092 (2001). CASPubMed Google Scholar
Gesing, A. et al. Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. J. Neurosci.21, 4822–4829 (2001). CASPubMedPubMed Central Google Scholar
Datson, N. A., van der Perk, J., de Kloet, E. R. & Vreugdenhil, E. Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur. J. Neurosci.14, 675–689 (2001). This paper describes a comprehensive database of MR- and GR-responsive gene patterns in the hippocampus. CASPubMed Google Scholar
Sabban, E. L. & Kvetnansky, R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci.24, 91–98 (2001). CASPubMed Google Scholar
Schaaf, M. J., Hoetelmans, R. W., de Kloet, E. R. & Vreugdenhil, E. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. J. Neurosci. Res.48, 334–341 (1997). CASPubMed Google Scholar
Hansson, A. C. et al. Gluco- and mineralocorticoid receptor-mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. Eur. J. Neurosci.12, 2918–2934 (2000). CASPubMed Google Scholar
Sandi, C. Stress, cognitive impairment and cell adhesion molecules. Nature Rev. Neurosci.5, 917–930 (2004). CAS Google Scholar
Kole, M. H., Costoli, T., Koolhaas, J. M. & Fuchs, E. Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress. Neuroscience125, 337–347 (2004). CASPubMed Google Scholar
Wossink, J., Karst, H., Mayboroda, O. & Joëls, M. Morphological and functional properties of rat dentate granule cells after adrenalectomy. Neuroscience108, 263–272 (2001). CASPubMed Google Scholar
Garcia, A., Steiner, B., Kronenberg, G., Bick-Sander, A. & Kempermann, G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell3, 363–371 (2004). CASPubMed Google Scholar
Woolley, C. S., Gould, E., Sakai, R. R., Spencer, R. L. & McEwen, B. S. Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Res.554, 312–315 (1991). CASPubMed Google Scholar
Hu, Z., Yuri, K., Ozawa, H., Lu, H. & Kawata, M. The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J. Neurosci.17, 3981–3989 (1997). CASPubMedPubMed Central Google Scholar
Nair, S. M. et al. Gene expression profiles associated with survival of individual rat dentate cells after endogenous corticosteroid deprivation. Eur. J. Neurosci.20, 3233–3243 (2004). CASPubMed Google Scholar
Almeida, O. F. et al. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J.14, 779–790 (2000). CASPubMed Google Scholar
Tanapat, P., Hastings, N. B., Rydel, T. A., Galea, L. A. & Gould, E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J. Comp. Neurol.437, 496–504 (2001). This report describes how stressful experiences rapidly diminish cell proliferation by increasing adrenal hormone levels, which results in a transient decrease in the number of adult-generated immature granule neurons. CASPubMed Google Scholar
Crochemore, C., Michaelidis, T. M., Fischer, D., Loeffler, J. P. & Almeida, O. F. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J.16, 761–770 (2002). CASPubMed Google Scholar
Heine, V. M., Maslam, S., Zareno, J., Joëls, M. & Lucassen, P. J. Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur. J. Neurosci.19, 131–144 (2004). PubMed Google Scholar
Joëls, M. Steroid hormones and excitability in the mammalian brain. Front. Neuroendocrinol.18, 2–48 (1997). PubMed Google Scholar
Joëls, M. & de Kloet, E. R. Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science245, 1502–1505 (1989). This paper shows that glucocorticoids can reduce transmitter-evoked excitability in the hippocampus, presumably through receptor-mediated genomic actions. PubMed Google Scholar
Joëls, M., Hesen, W. & de Kloet, E. R. Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. J. Neurosci.11, 2288–2294 (1991). PubMedPubMed Central Google Scholar
Beck, S. G., Choi, K. C., List, T. J., Okuhara, D. Y. & Birnsteil, S. Corticosterone alters 5-HT1A receptor-mediated hyperpolarization in area CA1 hippocampal pyramidal neurons. Neuropsychopharmacology14, 27–33 (1996). CASPubMed Google Scholar
Kerr, D. S., Campbell, L. W., Thibault, O. & Landfield, P. W. Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc. Natl Acad. Sci. USA89, 8527–8531 (1992). CASPubMedPubMed Central Google Scholar
Karst, H. et al. Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nature Neurosci.3, 977–978 (2000). CASPubMed Google Scholar
Venero, C. & Borrell, J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur. J. Neurosci.11, 2465–2473 (1999). CASPubMed Google Scholar
Di, S., Malcher-Lopes, R., Halmos, K. C. & Tasker, J. G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci.23, 4850–4857 (2003). This study presents evidence for rapid glucocorticoid feedback inhibition of hypothalamic hormone secretion by endocannabinoid release in the PVN. CASPubMedPubMed Central Google Scholar
Dong, Y. et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: Behavioral correlates in GluRA (−/−) mice. Proc. Natl Acad. Sci. USA101, 14282–14287 (2004). CASPubMedPubMed Central Google Scholar
Diamond, D. M., Bennett, M. C., Fleshner, M. & Rose, G. M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus2, 421–430 (1992). This research shows that corticosterone exerts a concentration-dependent biphasic influence on the expression of hippocampal plasticity. CASPubMed Google Scholar
Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci.23, 649–711 (2000). CASPubMed Google Scholar
Kim, J. J. & Diamond, D. The stressed hippocampus, synaptic plasticity and lost memories. Nature Rev. Neurosci.3, 453–462 (2002). CAS Google Scholar
Pavlides, C., Ogawa, S., Kimura, A. & McEwen, B. S. Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res.738, 229–235 (1996). CASPubMed Google Scholar
Xu, L., Anwyl, R. & Rowan, M. J. Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature394, 891–894 (1998). CASPubMed Google Scholar
Kim, J. J., Foy, M. R. & Thompson. Behavioral stress modifies hippocampal plasticity through _N_-methyl-D-aspartate receptor activation. Proc. Natl Acad. Sci. USA93, 4750–4753 (1996). CASPubMedPubMed Central Google Scholar
Blank, T., Nijholt, I., Eckart, K. & Spiess, J. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning. J. Neurosci.22, 3788–3794 (2002). CASPubMedPubMed Central Google Scholar
Rupprecht, R. et al. Progesterone receptor-mediated effects of neuroactive steroids. Neuron11, 523–530 (1993). CASPubMed Google Scholar
Korz, V. & Frey, J. U. Stress-related modulation of hippocampal long-term potentiation in rats: involvement of adrenal steroid receptors. J. Neurosci.23, 7281–7287 (2003). CASPubMedPubMed Central Google Scholar
Diamond, D. M., Park, C. R. & Woodson, J. C. Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus14, 281–291 (2004). PubMed Google Scholar
Oitzl, M. S. & de Kloet, E. R. Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behav. Neurosci.106, 62–71 (1992). This paper shows that corticosteroids affect behavioural strategies and the storage of spatial information through MR and GR in a differential and coordinated manner. CASPubMed Google Scholar
Oitzl, M. S., Reichardt, H. M., Joëls, M. & de Kloet, E. R. Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc. Natl Acad. Sci. USA98, 12790–12795 (2001). CASPubMedPubMed Central Google Scholar
Sandi, C., Loscertales, M. & Guaza, C. Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. Eur. J. Neurosci.9, 637–642 (1997). CASPubMed Google Scholar
Quirarte, G. L., Roozendaal, B. & McGaugh, J. L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl Acad. Sci. USA94, 14048–14053 (1997). This study shows that β-adrenergic activation seems to be an essential step in mediating glucocorticoid effects on memory storage and that the BLA is a locus of interaction for these two systems. CASPubMedPubMed Central Google Scholar
De Quervain, D. J., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature394, 787–790 (1998). CASPubMed Google Scholar
Myers, K. M. & Davis, M. Behavioral and neural analysis of extinction. Neuron36, 567–584 (2002). CASPubMed Google Scholar
Cordero, M. I., Merino, J. J. & Sandi, C. Correlational relationship between shock intensity and corticosterone secretion on the establishment and subsequent expression of contextual fear conditioning. Behav. Neurosci.112, 885–891 (1998). CASPubMed Google Scholar
Karst, H. et al. Glucocorticoids alter calcium conductances and calcium channel subunit expression in basolateral amygdala neurons. Eur. J. Neurosci.16, 1083–1089 (2002). PubMed Google Scholar
Vouimba, R. M., Yaniv, D., Diamond, D. & Richter-Levin, G. Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. Eur. J. Neurosci.19, 1887–1894 (2004). PubMed Google Scholar
Kim, J. J., Lee, H. J., Han, J. S. & Packard, M. G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci.21, 5222–5228 (2001). CASPubMedPubMed Central Google Scholar
Akirav, I. & Richter-Levin, G. Mechanisms of amygdala modulation of hippocampal plasticity. J. Neurosci.22, 912–921 (2002). Google Scholar
Maroun, M. & Richter-Levin, G. Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J. Neurosci.23, 4406–4409 (2003). CASPubMedPubMed Central Google Scholar
Amat, J. et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neurosci.8, 365–371 (2005). CASPubMed Google Scholar
Conrad, C. D., LeDoux, J. E., Magarinos, A. M. & McEwen, B. S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci.113, 902–913 (1999). CASPubMed Google Scholar
Bowman, R. E., Beck, K. D. & Luine, V. N. Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Horm. Behav.43, 48–59 (2003). CASPubMed Google Scholar
Woolley, C. S., Gould, E. & McEwen, B. S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res.531, 225–231 (1990). In this study, changes in dendritic morphology were observed that might have been indicative of neurons in the early stages of degeneration CASPubMed Google Scholar
Magarinos, A. M., McEwen, B. S., Flugge, G. & Fuchs, E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci.16, 3534–3540 (1996). These results indicate that a naturalistic psychosocial stressor induces specific structural changes in the hippocampal neurons of subordinate male tree shrews. CASPubMedPubMed Central Google Scholar
Sandi, C. et al. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur. J. Neurosci.17, 2447–2456 (2003). PubMed Google Scholar
Wellman, C. L. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J. Neurobiol.49, 245–253 (2001). CASPubMed Google Scholar
Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci.22, 6810–6818 (2002). The data presented here indicate that chronic stress can cause contrasting patterns of dendritic remodelling in neurons of the amygdala and hippocampus. CASPubMedPubMed Central Google Scholar
Magarinos, A. M., Verdugo, J. M. & McEwen, B. S. Chronic stress alters synaptic terminal structure in hippocampus. Proc. Natl Acad. Sci. USA94, 14002–14008 (1997). CASPubMedPubMed Central Google Scholar
Kole, M. H., Swan, L. & Fuchs, E. The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur. J. Neurosci.16, 807–816 (2002). PubMed Google Scholar
Karst, H. & Joëls, M. Effect of chronic stress on synaptic currents in rat hippocampal dentate gyrus neurons. J. Neurophysiol.89, 625–633 (2003). PubMed Google Scholar
Alfarez, D. N., Joëls, M. & Krugers, H. J. Chronic unpredictable stress impairs long-term potentiation in rat hippocampal CA1 area and dentate gyrus in vitro. Eur. J. Neurosci.17, 1928–1934 (2003). PubMed Google Scholar
Pham, K., Nacher, J., Hof, P. R. & McEwen, B. S. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci.17, 879–886 (2003). PubMed Google Scholar
Czeh, B. et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl Acad. Sci. USA98, 12796–12801 (2001). CASPubMedPubMed Central Google Scholar
Wong, E. Y. & Herbert, J. The corticoid environment: a determining factor for neural progenitors' survival in the adult hippocampus. Eur. J. Neurosci.20, 2491–2498 (2004). PubMedPubMed Central Google Scholar
Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci.20, 9104–9110 (2000). CASPubMedPubMed Central Google Scholar
Alonso, R. et al. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol. Psychiatry9, 278–286 (2004). CASPubMed Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003). The authors show that the behavioural effects of chronic antidepressant use might be mediated by the stimulation of neurogenesis in the hippocampus. CASPubMed Google Scholar
Saravia, F. E. et al. Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res.957, 345–353 (2002). CASPubMed Google Scholar
De Kloet, E. R. Brain corticosteroid balance and homeostatic control. Front. Neuroendocrinol.12, 95–164 (1991). Google Scholar
Herman, J. P., Watson, S. J. & Spencer, R. L. Defense of adrenocorticosteroid receptor expression in rat hippocampus: effects of stress and strain. Endocrinology140, 3981–3991 (1999). CASPubMed Google Scholar
Obradovic, D. et al. DAXX, FLASH, and FAF-1 modulate mineralocorticoid and glucocorticoid receptor mediated transcription in hippocampal cells: toward a basis for the opposite actions elicited by two nuclear receptors? Mol. Pharmacol.65, 761–769 (2004). CASPubMed Google Scholar
Meijer, O. C. et al. Steroid receptor coactivator-1 splice variants differentially affect corticosteroid receptor signaling. Endocrinology146, 1438–1448 (2005). CASPubMed Google Scholar
Karten, Y. J., Nair, S. M., van Essen, L., Sibug, R. & Joëls, M. Long-term exposure to high corticosterone levels attenuates serotonin responses in rat hippocampal CA1 neurons. Proc. Natl Acad. Sci. USA96, 13456–13461 (1999). This study shows that prolonged elevation of the corticosteroid concentration, which is a possible causative factor for depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. CASPubMedPubMed Central Google Scholar
Froger, N. et al. Neurochemical and behavioral alterations in glucocorticoid receptor-impaired transgenic mice after chronic mild stress. J. Neurosci.24, 2787–2796 (2004). CASPubMedPubMed Central Google Scholar
Lopez, J. F., Chalmers, D. T., Little, K. Y. & Watson, S. J. A. E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychol.43, 547–573 (1998). CAS Google Scholar
Dunn, A. J., Swiergiel, A. H. & Palamarchouk, V. Brain circuits involved in corticotropin-releasing factor-norepinephrine interactions during stress. Ann. NY Acad. Sci.1018, 25–34 (2004). CASPubMed Google Scholar
Cabib, S. & Puglisi-Allegra, S. Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences. J. Neurosci.14, 3333–3340 (1994). CASPubMedPubMed Central Google Scholar
Yau, J. L., Kelly, P. A. & Seckl, J. R. Increased glucocorticoid receptor gene expression in the rat hippocampus following combined serotonergic and medial septal cholinergic lesions. Brain Res. Mol. Brain Res.27, 174–178 (1994). CASPubMed Google Scholar
Maccari, S. et al. Hippocampal type I and type II corticosteroid receptors are modulated by central noradrenergic systems. Psychoneuroendocrinology17, 103–112 (1992). CASPubMed Google Scholar
Reul, J. M., Stec, I., Soder, M. & Holsboer, F. Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology133, 312–320 (1993). This paper indicates that during amitriptyline treatment, a rise in limbic MR might be the initial phenomenon in a successively adjusting HPA system, as evidenced by the decreasing plasma hormone concentrations, declining adrenal size and upregulation of GR in particular brain regions. CASPubMed Google Scholar
Lai, M. et al. Differential regulation of corticosteroid receptors by monoamine neurotransmitters and antidepressant drugs in primary hippocampal culture. Neuroscience118, 975–984 (2003). CASPubMed Google Scholar
Hugin-Flores, M. E., Steimer, T., Aubert, M. L. & Schulz, P. Mineralo- and glucocorticoid receptor mRNAs are differently regulated by corticosterone in the rat hippocampus and anterior pituitary. Neuroendocrinology79, 174–184 (2004). PubMed Google Scholar
Gass, P. et al. Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Rep.1, 447–451 (2000). CASPubMedPubMed Central Google Scholar
Edwards, E., King, J. A. & Fray, J. C. Increased basal activity of the HPA axis and renin angiotensin system in congenital learned helpless rats exposed to stress early in development. Int. J. Dev. Neurosci.17, 805–812 (1999). CASPubMed Google Scholar
Degen, S. B., Verheij, M. M. & Cools, A. R. Genetic background, nature of event, and time of exposure to event direct the phenotypic expression of a particular genotype. A study with apomorphine-(un)susceptible Wistar rats. Behav. Brain Res.154, 107–112 (2004). CASPubMed Google Scholar
Keck, M. E. et al. Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology26, 94–105 (2002). CASPubMed Google Scholar
Landgraf, R. & Wigger, A. Born to be anxious: neuroendocrine and genetic correlates of trait anxiety in HAB rats. Stress6, 111–119 (2003). CASPubMed Google Scholar
Murgatroyd, C. et al. Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. J. Neurosci.24, 7762–7770 (2004). CASPubMedPubMed Central Google Scholar
Bohus, B. et al. Neuroendocrine states and behavioral and physiological stress responses. Prog. Brain Res.72, 57–70 (1987). CASPubMed Google Scholar
Korte, S. M., Koolhaas, J. M., Wingfield, J. C. & McEwen, B. S. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev.29, 3–38 (2005). PubMed Google Scholar
Veenema, A. H., Meijer, O. C., de Kloet, E. R. & Koolhaas, J. M. Genetic selection for coping style predicts stressor susceptibility. J. Neuroendocrinol.15, 256–267 (2003). CASPubMed Google Scholar
Feldker, D. E. et al. Serial analysis of gene expression predicts structural differences in hippocampus of long attack latency and short attack latency mice. Eur. J. Neurosci.17, 379–387 (2003). PubMed Google Scholar
Seckl, J. R. & Meaney, M. J. Glucocorticoid programming. Ann. NY Acad. Sci.1032, 63–84 (2004). CASPubMed Google Scholar
Francis, D., Diorio, J., Liu, D. & Meaney, M. J. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science286, 1155–1158 (1999). CASPubMed Google Scholar
Levine, S. Infantile experience and resistance to physiological stress. Science126, 405 (1957). CASPubMed Google Scholar
Levine, S., Dent, G. W. & de Kloet, E. R. in Encyclopedia of Stress 518–526 (Academic, San Diego, USA, 2000). Google Scholar
Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S. & Sapolsky, R. M. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science239, 766–768 (1988). CASPubMed Google Scholar
Liu, D. et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science277, 1659–1662 (1997). CASPubMed Google Scholar
Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nature Neurosci.7, 847–854 (2004). These data indicate that a potentially reversible epigenomic state of a gene can be established through behavioural programming. CASPubMed Google Scholar
Ladd, C. O., Huot, R. L., Thrivikraman, K. V., Nemeroff, C. B. & Plotsky, P. M. Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo–pituitary–adrenal axis following neonatal maternal separation. Biol. Psychiatry55, 367–375 (2004). CASPubMed Google Scholar
Oitzl, M. S., Workel, J. O., Fluttert, M., Frosch, F. & de Kloet, E. R. Maternal deprivation affects behaviour from youth to senescence: amplification of individual differences in spatial learning and memory in senescent Brown Norway rats. Eur. J. Neurosci.12, 3771–3780 (2000). CASPubMed Google Scholar
Van Riel, E., van Gemert, N. G., Meijer, O. C. & Joëls, M. Effect of early life stress on serotonin responses in the hippocampus of young adult rats. Synapse53, 11–19 (2004). CASPubMed Google Scholar
Coplan, J. D. et al. Persistent elevations of cerebrospinal fluid concentrations of corticotrophin releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc. Natl Acad. Sci. USA93, 1619–1623 (1996). These data indicate a potential neurobiological mechanism in non-human primates by which early-life stressors might contribute to adult psychopathology. CASPubMedPubMed Central Google Scholar
Kendler, K. S. et al. Stressful life events, genetic liability, and onset of an episode of major depression in women. Am. J. Psychiatry152, 833–842 (1995). CASPubMed Google Scholar
Brown, E. S., Varghese, F. P. & McEwen, B. S. Association of depression with medical illness: does cortisol play a role? Biol. Psychiatry55, 1–9 (2004). CASPubMed Google Scholar
Lupien, S. J. et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neurosci.1, 69–73 (1998). This study presents evidence that basal cortisol elevation might cause hippocampal damage and impair hippocampus-dependent learning and memory in humans. CASPubMed Google Scholar
Sheline, Y. I., Sanghavi, M., Mintun, M. A. & Gado, M. H. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci.19, 5034–5043 (1999). CASPubMedPubMed Central Google Scholar
Müller, M. B. et al. Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur. J. Neurosci.14, 1603–1612 (2001). PubMed Google Scholar
Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nature Genet.23, 99–103 (1999). The authors show that conditional mutagenesis of GR in the nervous system provides genetic evidence for the importance of GR signalling in emotional behaviour CASPubMed Google Scholar
Boyle, M. P. et al. Acquired deficit of forebrain glucocorticoid receptor produces depression-like changes in adrenal axis regulation and behavior. Proc. Natl Acad. Sci. USA102, 473–478 (2005). CASPubMed Google Scholar
Wei, Q. et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc. Natl Acad. Sci. USA101, 11851–11856 (2004). CASPubMedPubMed Central Google Scholar
Smith, G. W. et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron20, 1093–1102 (1998). CASPubMed Google Scholar
Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genet.19, 162–166 (1998). CASPubMed Google Scholar
Müller, M. B. et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neurosci.6, 1100–1107 (2003). This study presents evidence that limbic CRHR1 modulates anxiety-related behaviour independent of HPA-axis function. PubMed Google Scholar
Pepin, M. C., Pothier, F. & Barden, N. Antidepressant drug action in a transgenic mouse model of the endocrine changes seen in depression. Mol. Pharmacol.42, 991–995 (1992). CASPubMed Google Scholar
Heuser, I., Yassouridis, A. & Holsboer, F. The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J. Psychiatr. Res.28, 341–356 (1994). CASPubMed Google Scholar
Meijer, O. C. et al. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology139, 1789–1793 (1998). CASPubMed Google Scholar
Purba, J. S., Hoogendijk, W. J., Hofman, M. A. & Swaab, D. F. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry53, 137–143 (1996). CASPubMed Google Scholar
Zobel, A. W. et al. Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression. A prospective study. J. Psychiatr. Res.35, 83–94 (2001). CASPubMed Google Scholar
Modell, S. et al. Hormonal response pattern in the combined DEX-CRH test is stable over time in subjects at high familial risk for affective disorders. Neuropsychopharmacology18, 253–262 (1998). CASPubMed Google Scholar
Pariante, C. M. et al. Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br. J. Pharmacol.134, 1335–1343 (2001). CASPubMedPubMed Central Google Scholar
Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry157, 1552–1562 (2000). CASPubMed Google Scholar
Heim, C. & Nemeroff, C. B. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry49, 1023–1039 (2001). CASPubMed Google Scholar
Rinne, T. et al. Hyperresponsiveness of hypothalamic–pituitary–adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biol. Psychiatry52, 1102–1112 (2002). CASPubMed Google Scholar
Davidson, J. R., Stein, D. J., Shalev, A. Y. & Yehuda, R. Posttraumatic stress disorder: acquisition, recognition, course, and treatment. J. Neuropsychiatry Clin. Neurosci.16, 135–147 (2004). PubMed Google Scholar
Lindley, S. E., Carlson, E. B. & Benoit, M. Basal and dexamethasone suppressed salivary cortisol concentrations in a community sample of patients with posttraumatic stress disorder. Biol. Psychiatry55, 940–945 (2004). CASPubMed Google Scholar
Binder, E. B. et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genet.36, 1319–1325 (2004). Individuals carrying a polymorphism in FKBP5, a GR-regulating co-chaperone, showed less HPA axis hyperactivity and a significant association with the response to antidepressants. CASPubMed Google Scholar
Wochnik, G. M. et al. FKBP51 and FKBP52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem. (in the press).
van Rossum, E. F. & Lamberts, S. W. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog. Horm. Res.59, 333–357 (2004). CASPubMed Google Scholar
Stevens, A. et al. Glucocorticoid sensitivity is determined by a specific glucocorticoid receptor haplotype. J. Clin. Endocrinol. Metab.89, 892–897 (2004). CASPubMed Google Scholar
Wüst, S. et al. Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. J. Clin. Endocrinol. Metab.89, 565–573 (2004). This was the first report to document an effect of GR gene polymorphisms on cortisol responses to psychosocial stress that might contribute to individual vulnerability to HPA-related disorders. PubMed Google Scholar
Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science301, 386–389 (2003). An epidemiological study that provides evidence of a gene-by-environment interaction, in which the response of an individual to environmental insults is moderated by genetic makeup. CASPubMed Google Scholar
Kaufer, D. et al. Restructuring the neuronal stress response with anti-glucocorticoid gene delivery. Nature Neurosci.7, 947–953 (2004). In this study, a genetic strategy diminished the neurological damage inflicted by glucocorticoids in the hippocampus. In particular, a chimeric receptor combining the ligand-binding domain of the glucocorticoid receptor and the DNA-binding domain of the oestrogen receptor seemed effective. CASPubMed Google Scholar
Seckl, J. R. & Walker, B. R. 11β-hydroxysteroid dehydrogenase type 1 as a modulator of glucocorticoid action: from metabolism to memory. Trends Endocrinol. Metab.15, 418–424 (2004). CASPubMed Google Scholar
Young, A. H. et al. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology29, 1538–1545 (2004). CASPubMed Google Scholar
Zobel, A. W. et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res.34, 171–181 (2000). CASPubMed Google Scholar
Schatzberg, A. F., Rothschild, A. J., Langlais, P. J., Bird, E. D. & Cole, J. O. A corticosteroid/dopamine hypothesis for psychotic depression and related states. Psychiatr. Res.19, 57–64 (1985). CAS Google Scholar
Belanoff, J. K. et al. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol. Psychiatry52, 386–392 (2002). CASPubMed Google Scholar
van der Lely, A. J., Foeken, K., van der Mast, R. C. & Lamberts, S. W. Rapid reversal of acute psychosis in the Cushing syndrome with the cortisol-receptor antagonist mifepristone (RU 486). Ann. Intern. Med.114, 143–144 (1991). CASPubMed Google Scholar
Oitzl, M. S., Fluttert, M., Sutanto, W. & de Kloet, E. R. Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur. J. Neurosci.10, 3759–3766 (1998). CASPubMed Google Scholar
Bachmann, C. G., Linthorst, A. C., Holsboer, F. & Reul, J. M. Effect of chronic administration of selective glucocorticoid receptor antagonists on the rat hypothalamic–pituitary–adrenocortical axis. Neuropsychopharmacology28, 1056–1067 (2003). CASPubMed Google Scholar
Holsboer, F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res.33, 181–214 (1999). CASPubMed Google Scholar
Aerni, A. et al. Low-dose cortisol for symptoms of posttraumatic stress disorder. Am. J. Psychiatry161, 1488–1490 (2004). PubMed Google Scholar
Schelling, G. et al. Stress doses of hydrocortisone, traumatic memories, and symptoms of posttraumatic stress disorder in patients after cardiac surgery: a randomized study. Biol. Psychiatry55, 627–633 (2004). CASPubMed Google Scholar
Hsu, S. Y. & Hsueh, A. J. Human stresscopin and stresscopin-related peptide are selective ligands for the type corticotropin-releasing hormone receptor. Nature Med.7, 605–611 (2001). CASPubMed Google Scholar
Reyes, T. M. et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl Acad. Sci. USA98, 2843–2848 (2001). CASPubMedPubMed Central Google Scholar
Heinrichs, S. C. & Koob, G. F. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J. Pharmacol. Exp. Ther.311, 427–440 (2004). CASPubMed Google Scholar
De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev.24, 488–522 (2003). CASPubMed Google Scholar