Caviness, V. S. Jr & Rakic, P. Mechanisms of cortical development: a view from mutations in mice. Annu. Rev. Neurosci.1, 297–326 (1978). PubMed Google Scholar
Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol.124, 319–335 (1965). CAS Google Scholar
Altman, J. & Das, G. D. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol.126, 337–390 (1966). CASPubMed Google Scholar
Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol.128, 431–474 (1966). Google Scholar
Bayer, S. A. & Altman, J. Radiation-induced interference with postnatal hippocampal cytogenesis in rats and its long-term effects in the acquisition of neurons and glia. J. Comp. Neurol.163, 1–20 (1975). Google Scholar
Bayer, S. A. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J. Comp. Neurol.190, 87–114 (1980). CASPubMed Google Scholar
Skutella, T. & Nitsch, R. New molecules for hippocampal development. Trends Neurosci.24, 107–113 (2001). CASPubMed Google Scholar
Gottlieb, D. I. & Cowan, W. M. Evidence for a temporal factor in the occupation of available synaptic sites during the development of the dentate gyrus. Brain Res.41, 452–456 (1972). CASPubMed Google Scholar
Bayer, S. A. & Altman, J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog. Neurobiol.29, 57–106 (1987). CAS Google Scholar
Zhou, C. F., Li, Y., Morris, R. J. & Raisman, G. Accurate reconstruction of three complementary laminar afferents to the adult hippocampus by embryonic neural grafts. Neurosci. Res.13 (Suppl.), S43–S53 (1990). CAS Google Scholar
Field, P. M., Seeley, P. J., Frotscher, M. & Raisman, G. Selective innervation of embryonic hippocampal transplants by adult host dentate granule cell axons. Neuroscience41, 713–727 (1991). CASPubMed Google Scholar
Li, D., Field, P. M., Strega, U., Li, Y. & Raisman, G. Entorhinal axons project to dentate gyrus in organotypic slice co-culture. Neuroscience52, 799–813 (1993). CASPubMed Google Scholar
Li, D., Field, M. & Raisman, G. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture. Exp. Neurol.142, 151–160 (1996). CASPubMed Google Scholar
Frotscher, M. & Heimrich, B. Formation of layer-specific fiber projections to the hippocampus in vitro. Proc. Natl Acad. Sci. USA90, 10400–10403 (1993). CASPubMed Google Scholar
Frotscher, M. & Heimrich, B. Lamina-specific synaptic connections of hippocampal neurons in vitro. J. Neurobiol.26, 350–359 (1995). CASPubMed Google Scholar
Zhao, S., Förster, E., Chai, X. & Frotscher, M. Different signals control laminar specificity of commissural and entorhinal fibers to the dentate gyrus. J. Neurosci.23, 7351–7357 (2003). By using co-cultures of wild-type and mutant hippocampus this paper shows that components of the ECM control the lamination of entorhinal fibres to the dentate gyrus. By contrast, positional cues on the target cells guide commissural/associational fibres. CASPubMed Google Scholar
McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science245, 978–982 (1989). CASPubMed Google Scholar
Soriano, E., Del Rio, J. A., Martinez, A. & Super, H. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J. Comp. Neurol.342, 571–595 (1994). CASPubMed Google Scholar
Super, H. & Soriano, E. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural and septal connections studied with the lipophilic tracer DiI. J. Comp. Neurol.344, 101–120 (1994). CASPubMed Google Scholar
Del Rio, J. A. et al. A role for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature385, 70–74 (1997). Cajal–Retzius cells are early targets of entorhinal fibres to the hippocampus. Their selective elimination results in misrouting of the entorhino-hippocampal projection. CASPubMed Google Scholar
Ceranik, K. et al. Hippocampal Cajal–Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies. Eur. J. Neurosci.11, 4278–4290 (1999). CASPubMed Google Scholar
Super, H., Martinez, A., del Rio, J. A. & Soriano, E. Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J. Neurosci.18, 4616–4626 (1998). CASPubMed Google Scholar
Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron26, 727–740 (2000). The laminated termination of entorhinal fibres and commissural/associational fibres to the hippocampus is preserved in the absence of GABAergic interneurons, precluding a role of GABAergic cells as guide posts. Google Scholar
Drakew, A., Frotscher, M. & Heimrich, B. Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization. Neuroscience94, 767–774 (1999). CASPubMed Google Scholar
Frotscher, M., Drakew, A. & Heimrich, B. Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells. Cereb. Cortex10, 946–951 (2000). CASPubMed Google Scholar
Nitsch, R. & Frotscher, M. Maintenance of peripheral dendrites of GABAergic neurons requires specific input. Brain Res.554, 304–307 (1991). CASPubMed Google Scholar
Deller, T. et al. The hippocampus of the reeler mutant mouse: fiber segregation in area CA1 depends on the position of the postsynaptic target cells. Exp. Neurol.156, 254–267 (1999). CASPubMed Google Scholar
Deller, T., Drakew, A. & Frotscher, M. Different primary target cells are important for fiber lamination in the fascia dentata: a lesson from reeler mutant mice. Exp. Neurol.156, 239–253 (1999). CASPubMed Google Scholar
Stanfield, B. B. & Cowan, W. M. The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol.185, 393–422 (1979). CASPubMed Google Scholar
Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell97, 689–701 (1999). Firmly established a role for VLDLR and APOER2 as receptors for the ECM protein reelin. CASPubMed Google Scholar
Drakew, A. et al. Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol.176, 12–24 (2002). CASPubMed Google Scholar
Gebhardt, C. et al. Abnormal positioning of granule cells alters afferent fiber distribution in the mouse fascia dentata: morphologic evidence from reeler, apolipoprotein E receptor 2-, and very low density lipoprotein receptor knockout mice. J. Comp. Neurol.445, 278–292 (2002). PubMed Google Scholar
Barbera, A. J., Marchase, R. B. & Roth, S. Adhesive recognition and retinotectal specificity. Proc. Natl Acad. Sci. USA70, 2482–2486 (1973). CASPubMed Google Scholar
Gottlieb, D. I., Rock, K. & Glaser, L. A gradient of adhesive specificity in developing avian retina. Proc. Natl Acad. Sci. USA73, 410–414 (1976). CASPubMed Google Scholar
Emerling, D. E. & Lander, A. D. Inhibitors and promotors of thalamic neuron adhesion and outgrowth in embryonic neocortex: functional association with chondroitin sulfate. Neuron17, 1089–1100 (1996). CASPubMed Google Scholar
Förster, E. et al. Lamina-specific cell adhesion on living slices of hippocampus. Development125, 3399–3410 (1998). PubMed Google Scholar
Förster, E., Zhao, S. & Frotscher, M. Hyaluronan-associated adhesive cues control fiber segregation in the hippocampus. Development128, 3029–3039 (2001). PubMed Google Scholar
Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in _Gli3_-deficient mice. Development125, 2315–2325 (1998). CASPubMed Google Scholar
Rickmann, M., Amaral, D. G. & Cowan, M. Organization of radial glia cells during the development of the rat dentate gyrus. J. Comp. Neurol.264, 449–479 (1987). CASPubMed Google Scholar
Altman, J. & Bayer, S. A. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J. Comp. Neurol.301, 325–342 (1990). CASPubMed Google Scholar
Altman, J. & Bayer, S. A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol.301, 365–381 (1990). CASPubMed Google Scholar
Pleasure, S. J., Collins, A. E. & Lowenstein, D. H. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J. Neurosci.20, 6095–6105 (2000). CASPubMed Google Scholar
Bagri, A. et al. The chemokine SDF1 regulates migration of dentate granule cells. Development129, 4249–4260 (2002). Characterizes the route of migration of dentate granule cells usingin uteroretroviral injections. Moreover, the chemokine SDF1 and its receptor CXCR4 were found to regulate granule cell migration. CASPubMed Google Scholar
Nadarajah, B. & Parnavelas, J. G. Modes of neuronal migration in the developing cerebral cortex. Nature Rev. Neurosci.3, 423–432 (2002). Describes three modes of neuronal migration: somal translocation in early generated neurons, glia-guided radial migration used by pyramidal cells, and tangential migration of interneurons. CAS Google Scholar
Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development127, 5253–5263 (2000). CAS Google Scholar
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial units in neocortex. Nature409, 714–720 (2001). CASPubMed Google Scholar
Noctor, S. C. et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci.22, 3161–3173 (2002). CASPubMed Google Scholar
Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Assymetric inheritance of radial glial fibers by cortical neurons. Neuron31, 727–741 (2001). CASPubMed Google Scholar
Tissir, F. & Goffinet, A. M. Reelin and brain development. Nature Rev. Neurosci.4, 496–505 (2003). An excellent review of what is known about the function of reelin and the signalling cascades involved. CAS Google Scholar
Zhao, S., Chai, X., Förster, E. & Frotscher, M. Reelin is a positional signal for the lamination of dentate granule cells. Development131, 5117–5125 (2004). When a slice of reeler hippocampus was co-cultured to a wild-type hippocampal slice the lamination of dentate granule cells was rescued in the reeler slice, showing that reelin needs to be in a specific location to exert its effect on granule cell lamination. CASPubMed Google Scholar
Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal positioning in the developing brain is regulated by mouse disabled-1. Nature389, 733–737 (1997). CASPubMed Google Scholar
Förster, E. et al. Reelin, Disabled 1, and β1-integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl Acad. Sci. USA99, 13178–13183 (2002). Google Scholar
Frotscher, M., Haas, C. & Förster, E. Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex13, 634–640 (2003). PubMed Google Scholar
Weiss, K. -H. et al. Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice and ApoER2/VLDLR deficient mice. J. Comp. Neurol.460, 56–65 (2003). CASPubMed Google Scholar
Schwab, M. H. et al. Neuronal basic helix–loop–helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J. Neurosci.20, 3714–3724 (2000). CASPubMed Google Scholar
Galceran, J., Miyashita-Lin, E. M., Dvaney, E., Rubenstein, J. L. & Grosschedl, R. Hippocampus development and generation of dentate granule cells is regulated by LEF1. Development127, 469–482 (2000). CASPubMed Google Scholar
Liu, M. et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl Acad. Sci. USA97, 865–870 (2000). CASPubMed Google Scholar
Del Turco, D. et al. Laminar organization of the mouse dentate gyrus: insights from BETA2/Neuro D mutant mice. J. Comp. Neurol.477, 81–95 (2004). PubMed Google Scholar
Zhou, C. J., Zhao, C. & Pleasure, S. J. Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J. Neurosci.24, 121–126 (2004). CASPubMed Google Scholar
Lee, S. M., Tole, S., Grove, E. & McMahon, A. P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development127, 457–467 (2000). CASPubMed Google Scholar
Pellegrini, M., Mansouri, A., Simeone, A., Boncinelli, E. & Gruss, P. Dentate gyrus formation requires Emx2. Development122, 3893–3898 (1996). CASPubMed Google Scholar
Yoshida, M. Emx1 and Emx2 functions in development of dorsal telencephalon. Development124, 101–111 (1997). CASPubMed Google Scholar
Porter, F. D. et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development124, 2935–2944 (1997). CAS Google Scholar
Zhao, Y. et al. Control of hippocampal morphogenesis and neuronal differentiation by the LIM homeobox gene Lhx5. Science284, 1155–1158 (1999). CAS Google Scholar
Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nature Neurosci.3, 679–686 (2000). CASPubMed Google Scholar
Tole, S., Goudreau, G., Assimacopoulos, S. & Grove, E. A. Emx2 is required for growth of the hippocampus but not for hippocampal field specification. J. Neurosci.20, 2618–2625 (2000). CASPubMed Google Scholar
Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science278, 474–476 (1997). CAS Google Scholar
Marin, O., Anderson, S. A. & Rubenstein, J. L. R. Origin and molecular specification of striatal interneurons. J. Neurosci.20, 6063–6076 (2000). CASPubMed Google Scholar
Marin-Padilla, M. Cajal–Retzius cells and the development of the neocortex. Trends Neurosci.21, 64–71 (1998). CASPubMed Google Scholar
Hevner, R. F., Neogi, T., Englund, C., Daza, R. A. & Fink, A. Cajal–Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdates suggest a pallial origin. Brain Res. Dev. Brain Res.141, 39–53 (2003). CASPubMed Google Scholar
Shinozaki, K. et al. Absence of Cajal–Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development129, 3479–3492 (2002). CASPubMed Google Scholar
Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci.19, 7881–7888 (1999). CASPubMed Google Scholar
Meyer, G. & Wahle, P. The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the fetal human cortex. Eur. J. Neurosci.11, 3937–3944 (1999). CASPubMed Google Scholar
Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex. J. Neurosci.21, 5607–5619 (2001). CASPubMed Google Scholar
Meyer, G., Cabrera Socorro, A., Perez Garcia, C. G., Abraham, H. & Caput, D. Expression of p73 and reelin in the developing human cortex. J. Neurosci.22, 4973–4986 (2002). CASPubMed Google Scholar
Bielle, F. et al. Multiple origins of Cajal–Retzius cells at the borders of the developing pallium. Nature Neurosci.8, 1002–1012 (2005). CASPubMed Google Scholar
Hartmann, D., Sievers, J., Pehlemann, F. W. & Berry, M. Destruction of meningeal cells over the medial cerebral hemisphere of newborn hamsters prevents the formation of the infrapyramidal blade of the dentate gyrus. J. Comp. Neurol.320, 33–61 (1992). CASPubMed Google Scholar
Hartmann, D., Frotscher, M. & Sievers, J. Development of granule cells, and afferent and efferent connections of the dentate gyrus after experimentally induced reorganization of the supra- and infrapyramidal blades. Acta Anat.150, 25–37 (1994). CASPubMed Google Scholar
Tamamaki, N. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus. J. Comp. Neurol.411, 257–266 (1999). CASPubMed Google Scholar
Graus-Porta, D. et al. β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron31, 367–379 (2001). CASPubMed Google Scholar
Halfter, W., Dong, S., Yip, Y. P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci.22, 6029–6040 (2002). CASPubMed Google Scholar
Hartmann, D., DeStooper, B. & Saftig, P. Presenilin-1 deficiency leads to loss of Cajal–Retzius neurons and cortical dysplasia similar to human type II lissencephaly. Curr. Biol.9, 719–727 (1999). CASPubMed Google Scholar
Niewmierzycka, A., Mills, J., St-Arnaud, R., Dedhar, S. & Reichardt, L. F. Integrin-linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly. J. Neurosci.25, 7022–7031 (2005). CASPubMedPubMed Central Google Scholar
Meyer, G. et al. Developmental roles of p73 in Cajal–Retzius cells and cortical patterning. J. Neurosci.24, 9878–9887 (2004). CASPubMed Google Scholar
Stumm, R. K. et al. CXCR4 regulates interneuron migration in the developing neocortex. J. Neurosci.23, 5123–5130 (2003). CASPubMed Google Scholar
Tissir, F., Wang, C. E. & Goffinet, A. M. Expression of the chemokine receptor CXCR4 mRNA during mouse brain development. Brain Res. Dev. Brain Res.22, 63–71 (2004). Google Scholar
Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science287, 864–869 (2000). Despite the lack of transmitter release in Munc18-1-deficient mice, cortical layers, fibre projections and synaptic structures develop normally. CAS Google Scholar
Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci.3, 728–738 (2002). CAS Google Scholar
Houser, C. R. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res.535, 195–204 (1990). CASPubMed Google Scholar
Houser, C. R. Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv. Neurol.79, 743–761 (1999). CASPubMed Google Scholar
Haas, C. A. et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci.22, 5797–5802 (2002). The extent of granule cell dispersion in patients with epilepsy was found to correlate with a loss of reelin-synthesizing Cajal–Retzius cells, indicating that reelin could have a role in the maintenance of granule cell lamination in the adult human brain. CASPubMed Google Scholar
Tauck, D. L. & Nadler, J. V. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci.5, 1016–1022 (1985). CASPubMed Google Scholar
Nadler, J. V. The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res.28, 1649–1658 (2003). CASPubMed Google Scholar
Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron18, 29–42 (1997). CASPubMed Google Scholar
Wenzel, H. J., Robbins, C. A., Tsai, L. H. & Schwartzkroin, P. A. Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical displasia associated with spontaneous seizures. J. Neurosci.21, 983–998 (2001). CASPubMed Google Scholar
Walter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development101, 685–696 (1987). CASPubMed Google Scholar
Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron47, 803–815 (2005). CASPubMed Google Scholar
Zhao, C., Teng, E. M., Summers, R. G. Jr, Ming, G. -L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci.26, 3–11 (2006). The authors used retrovirus-mediated gene transduction to monitor the dendritic and axonal differentiation of adult-born dentate granule cells. CASPubMed Google Scholar
Blackstad, T. W. Commissural connections of the hippocampal region of the rat, with special reference to their mode of termination. J. Comp. Neurol.105, 417–537 (1956). CASPubMed Google Scholar
Blackstad, T. W. On the termination of some afferents to the hippocampus and fascia dentata: an experimental study in the rat. Acta Anat. (Basel) 35, 202–214 (1958). CAS Google Scholar
Deller, T., Martinez, A., Nitsch, R. & Frotscher, M. A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic interneurons. J. Neurosci.16, 3322–3333 (1996). CASPubMed Google Scholar
Ribak, C. E. & Seress, L. Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J. Neurocytol.12, 577–597 (1983). CASPubMed Google Scholar
Soriano, E. & Frotscher, M. A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res.503, 170–174 (1989). CASPubMed Google Scholar
Han, Z. S., Buhl, E. H., Lorinczi, Z. & Somogyi, P. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci.5, 395–410 (1993). CASPubMed Google Scholar
Soriano, E. & Frotscher, M. GABAergic innervation of the rat fascia dentata: a novel type of interneuron in the granule cell layer with extensive axonal arborization in the molecular layer. J. Comp. Neurol.334, 385–396 (1993). CASPubMed Google Scholar
Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus6, 347–470 (1996). CASPubMed Google Scholar
Beffert, U. et al. Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci.24, 1897–1906 (2004). CASPubMed Google Scholar
Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA93, 11173–11178 (1996). CASPubMed Google Scholar
Ko, J. et al. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci.395, 510–522 (2001). Google Scholar
Pilz, D. T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet.7, 2029–2037 (1998). CASPubMed Google Scholar
Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron23, 247–256 (1999). CASPubMed Google Scholar
Corbo, J. C. et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci.22, 7548–7557 (2002). CASPubMed Google Scholar
Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci.6, 1277–1283 (2003). CASPubMed Google Scholar
Fleck, M. W. et al. Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J. Neurosci.20, 2439–2450 (2000). CASPubMed Google Scholar
Gale, L. M. & McColl, S. R. Chemokines: extracellular messengers for all occasions? Bioessays21, 17–28 (1999). CASPubMed Google Scholar