Towards multimodal atlases of the human brain (original) (raw)
Toga, A. W. & Mazziotta, J. C. in Brain Mapping: the Methods (eds Toga, A. W. & Mazziotta, J.C.) 3–25 (Academic, San Diego, 1996). Google Scholar
Duvernoy, H. M. The Human Brain (Springer, New York, 1991). Google Scholar
Ono, M., Kubik, S. & Abernathey, C. D. Atlas of the Cerebral Sulci (Thieme, Stuttgart, 1990). This widely used atlas reports anatomical descriptions and trends in individual variabilities of cortical sulci. It serves as a reminder of the challenges in developing multisubject reference systems for human brain mapping. Google Scholar
Talairach, J. & Szikla, G. Atlas d'Anatomie Stereotaxique du Telencephale: Etudes Anatomo-Radiologiques (Masson & Cie, Paris, 1967) (in French). Google Scholar
Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988). This atlas influenced the brain mapping field by providing a principled method for spatially transforming anatomical datasets into a coordinate-based reference system based on the anterior commissure–posterior commisure line. The atlas presents post-mortem data from a single subject.
Brodmann, K. in Some Papers on the Cerebral Cortex, translated as: On the Comparative Localization of the Cortex 201–230 (Thomas, Springfield, Illinois, 1960). Google Scholar
von Economo, C. & Koskinas, G. N. Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen (Springer, Berlin, 1925) (in German). Google Scholar
Flechsig, P. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage (Thieme, Leipzig, 1920) (in German). Google Scholar
Smith, G. E. A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relation-ship to the cerebral sulci. J. Anat.41, 237–254 (1907). CAS Google Scholar
Vogt, C. & Vogt, O. Allgemeinere ergebnisse unserer hirnforschung. J. Psychol. Neurol.25, 292–398 (1919) (in German). Google Scholar
Mai, J., Assheuer, J. & Paxinos, G. Atlas of the Human Brain (Academic, San Diego, 1997). Google Scholar
Matsui, T. & Hirano, A. An Atlas of the Human Brain for Computerized Tomography (Igako-Shoin,Tokyo, 1978). Google Scholar
Schaltenbrand, G. & Bailey, P. Introduction to Stereotaxis with an Atlas of the Human Brain (Thieme, Stuttgart & New York, 1959). Google Scholar
Schaltenbrand, G. & Wahren, W. Atlas for Stereotaxy of the Human Brain 2nd edn (Thieme, Stuttgart, 1977). Google Scholar
Van Buren, J. M. & Borke, R. C. Variations and Connections of the Human ThalamusVols 1 & 2 (Springer, New York, 1972). Book Google Scholar
Van Buren, J. M. & Maccubin, D. An outline atlas of human basal ganglia and estimation of anatomic variants. J. Neurosurg.19, 811–839 (1962). ArticleCASPubMed Google Scholar
Mansour, A., Fox, C. A., Burke, S., Akil, H. & Watson, S. J. Immunohistochemical localization of the cloned mu opioid receptor in the rat CNS. J. Chem. Neuroanat.8, 283–305 (1995). ArticleCASPubMed Google Scholar
Dejerine, J. Anatomie des Centres Nerveux (Rueff, Paris, 1901). Google Scholar
Damasio, H. Human Brain Anatomy in Computerized Images (Oxford Univ. Press, Oxford & New York, 1995). Google Scholar
Mori, S., Wakana, S., Nagae-Poetscher, L. M. & van Zijl, P. C. MRI Atlas of Human White Matter (Elsevier Science, Amsterdam, 2005). Google Scholar
Toga, A. W. Brain Warping (Academic, San Diego, 1998). The author surveys the many approaches and computational algorithms for deforming brain imaging data from multiple subjects or modalities to match an atlas or other standardized coordinate space. Google Scholar
Zilles, K. et al. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Europ. Neuropsychopharmacol.12, 587–599 (2002). ArticleCAS Google Scholar
Brodmann, K. Physiologie des Gehirns. Neue Dtsch Chir.11, 85–426 (1914) (in German). Google Scholar
Bailey, P. & von Bonin, G. The Isocortex of Man (Univ. Illinois Press, Urbana, 1951). Google Scholar
Sanides, F. Die Architektonik des menschlichen Stirnhirns (Springer, Berlin & New York, 1962)(in German). Book Google Scholar
Sarkisov, S. A., Filimonoff, I. N., Kononowa, E. P., Preobrachenskaja, I. S. & Kukuew, L. A. Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medgiz, Moscow, 1955). Google Scholar
Zilles, K., Armstrong, E., Schleicher, A. & Kretschmann, H. J. The human pattern of gyrification in the cerebral cortex. Anat. Embryol.179, 173–179 (1988). ArticleCAS Google Scholar
Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G. & Orban, G. A. Observing others: multiple action representation in the frontal lobe. Science310, 332–336 (2005). ArticleCASPubMed Google Scholar
Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science268, 889–893 (1995). ArticleCASPubMed Google Scholar
Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron29, 287–296 (2001). ArticleCASPubMed Google Scholar
Lashley, K. S. & Clark, G. The cytoarchitecture of the cerebral cortex of atlases: a critical examination of architectonic studies. J. Comp. Neurol.85, 223–306 (1946). ArticleCASPubMed Google Scholar
Luppino, G. & Rizzolatti, G. The organization of the frontal motor cortex. News Physio. Sci.15, 219–224 (2000). Google Scholar
Zilles, K., Schleicher, A., Palomero-Gallagher, N. & Amunts, K. in Brain Mapping: The Methods 2nd edn (eds Toga, A. W. & Mazziotta, J. C.) 573–602 (Academic, Amsterdam,2002). Book Google Scholar
Amunts, K. et al. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol.412, 319–341 (1999). ArticleCASPubMed Google Scholar
Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T. & Zilles, K. Brodmann's areas 17 and 18 brought into stereotaxic space — where and how variable? NeuroImage11, 66–84 (2000). ArticleCASPubMed Google Scholar
Zilles, K. et al. Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum. Brain Mapp.5, 218–221 (1997). ArticleCASPubMed Google Scholar
Talavage T. M. et al. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J. Neurophysiol.91, 1282–1296 (2004). ArticlePubMed Google Scholar
Geyer, S. et al. Two different areas within the primary motor cortex of man. Nature382, 805–807 (1996). ArticleCASPubMed Google Scholar
Young, J. P. et al. Regional cerebral blood flow correlations of somatosensory areas 3a, 3b, 1, and 2 in humans during rest: a PET and cytoarchitectural study. Hum. Brain Mapp.19, 183–196 (2003). ArticlePubMedPubMed Central Google Scholar
Hagler, D. & Sereno, M. I. Spatial maps in frontal and prefrontal cortex. Neuroimage29, 567–577 (2005). ArticlePubMed Google Scholar
Van Essen, D. C. Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage23, S97–S107 (2004). This review article describes many of the neuroanatomical, technical and informatics issues involved in integrating cortically-derived neuroimaging data across subjects and modalities. ArticlePubMed Google Scholar
Larsson, J. et al. Neuronal correlates of real and illusory contour perception: functional anatomy with PET. Europ. J. Neurosci.11, 4024–4036 (1999). ArticleCAS Google Scholar
Schleicher, A., Amunts, K., Geyer, S., Morosan, P. & Zilles, K. Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. Neuroimage9, 165–177 (1999). ArticleCASPubMed Google Scholar
Schleicher, A. et al. A stereological approach to human cortical architecture: identification and delineation of cortical areas. J. Chem. Neuroanat.20, 31–47 (2000). ArticleCASPubMed Google Scholar
Schleicher, A. et al. Quantitative architectonic analysis: a new approach to cortical mapping. Anat. Embryol.210, 373–386 (2005). ArticleCAS Google Scholar
Annese, J. & Toga, A. W. in Brain Mapping: The Methods (eds Toga, A. W. & Mazziotta, J. C.) 537–564 (Academic, San Diego, 2002). Book Google Scholar
Hömke, L. in Numerical Linear Algebra with Applications 215–229 (Wiley, Copper Mountain, 2006). Google Scholar
Thompson, P. & Toga, A. W. in Handbook of Medical Image Processing (ed. Bankman, I.) 159–170 (Academic, San Diego, 2000). Google Scholar
Roland P. E. & Zilles K. Brain atlases — a new research tool. Trends Neurosci.17, 458–467 (1994). ArticleCASPubMed Google Scholar
Mazziotta, J. C. et al. A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond., B, Biol. Sci.356, 1293–1322 (2001). A description of an international consortium project that was set up to develop a probabilistic reference system for the human brain, incorporating statistical information on the variations in human brain structure and function in a population of 7000 subjects. ArticleCAS Google Scholar
Evans, A. C., Collins, D. L. & Milner, B. An MRI-based stereotactic brain atlas from 300 young normal subjects. Soc. Neurosci. Abstr. 408 (1992).
Eickhoff, S. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage25, 1325–1335 (2005). ArticlePubMed Google Scholar
Grefkes, C., Geyer, S., Schormann, T., Roland, P. & Zilles, K. Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. NeuroImage14, 617–631 (2001). ArticleCASPubMed Google Scholar
Eickhoff, S., Schleicher, A., Zilles, K. & Amunts, K. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb. Cortex16, 254–267 (2005). ArticlePubMed Google Scholar
Geyer, S., Schleicher, A. & Zilles, K. Areas 3a, 3b, and 1 of human primary somatosensory cortex: 1. Microstructural organization and interindividual variability. NeuroImage10, 63–83 (1999). ArticleCASPubMed Google Scholar
Choi, H.-J. et al. Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J. Comp. Neurol.495, 53–69 (2006). ArticlePubMedPubMed Central Google Scholar
Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R. & Zilles, K. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum. Brain Mapp.27, 611–621 (2006). ArticlePubMed Google Scholar
Malikovic, A. et al. Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. Cereb. Cortex 7 April 2006 (doi:10.1093/cercor/bhj181).
Amunts, K. et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol.210, 342–352 (2005). Google Scholar
Geyer, S., Schormann, T., Mohlberg, H. & Zilles, K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. 2. Spatial normalization to standard anatomical space. NeuroImage11, 684–696 (2000). ArticleCASPubMed Google Scholar
Morosan, P. et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage13, 684–701 (2001). ArticleCASPubMed Google Scholar
Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage13, 669–683 (2001). ArticleCASPubMed Google Scholar
Rademacher, J. Bü rgel, U. & Zilles, K. Stereotaxic localization, intersubject variability and interhemispheric differences of the human auditory thalamocortical system. NeuroImage17, 142–160 (2002). ArticleCASPubMed Google Scholar
Roland, P. E. & Zilles, K. The developing european computerized human brain database for all imaging modalities. NeuroImage4, 39–47 (1996). Article Google Scholar
Roland, P. E. et al. Cytoarchitectural maps of the human brain in standard anatomical space. Hum. Brain Mapp.5, 222–227 (1997). ArticleCASPubMed Google Scholar
Zilles, K. & Palomero-Gallagher, N. Cyto-, myelo- and receptor architectonics of the human parietal cortex. NeuroImage14, 8–20 (2001). Article Google Scholar
Zilles, K. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J. Anatomy187, 515–537 (1995). CAS Google Scholar
Amunts, K. et al. Analysis of the neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space — the roles of Brodmann areas 44 and 45 NeuroImage22, 42–56 (2004). ArticlePubMed Google Scholar
Bodegård, A. et al. Object shape differences reflected by somatosensory cortical activation. J. Neurosci.20, 1–5 (2000). Article Google Scholar
Bodegård, A. et al. Somatosensory areas in man activated by moving stimuli. Cytoarchitectonic mapping and PET. NeuroReport11, 187–191 (2000). ArticlePubMed Google Scholar
Eickhoff, S., Amunts, K., Mohlberg, H. & Zilles, K. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb. Cortex16, 268–279 (2006). ArticlePubMed Google Scholar
Horwitz, B. et al. Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia41, 1868–1876 (2003). ArticlePubMed Google Scholar
Pazos, A., Probst, A. & Palacios, J. M. Serotonin receptors in the human brain — III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience21, 97–122 (1987). ArticleCASPubMed Google Scholar
Pazos, A., Probst, A. & Palacios, J. M. Serotonin receptors in the human brain — IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience21, 123–139 (1987). ArticleCASPubMed Google Scholar
Vogt, B. A., Plager, M. D., Crino, P. B. & Bird, E. D. Laminar distributions of muscarinic acetylcholine, serotonin, GABA and opioid receptors in human posterior cingulate cortex. Neuroscience36, 165–174 (1990). ArticleCASPubMed Google Scholar
Zilles, K. in From Monkey Brain to Human Brain (eds Dehaene, S., Duhamel, J.-R., Hauser, M. & Rizzolatti, G.) 41–56 (MIT Press, Cambridge, Massachusetts, 2005). Google Scholar
Zilles, K., Palomero-Gallagher, N. & Schleicher, A. Transmitter receptors and functional anatomy of the cerebral cortex. J. Anat.205, 417–432 (2004). ArticleCASPubMedPubMed Central Google Scholar
Geyer, S., Schleicher, A. & Zilles, K. The somatosensory cortex of human: cytocarchitecture and regional distributions of receptor-binding sites. NeuroImage6, 27–45 (1997). ArticleCASPubMed Google Scholar
Morosan, P., Rademacher, J., Palomero-Gallagher, N. & Zilles, K. in The Auditory Cortex: Towards a Synthesis of Human and Animal Research (eds König, R., Heil, P., Budinger, E. & Scheich, H.) 27–50 (Lawrence Erlbaum, Mahwah, New Jersey, 2005). Google Scholar
Basser, P. J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B103, 247–254 (1994). ArticleCASPubMed Google Scholar
Conturo, T. E., McKinstry, R. C., Akbudak, E. & Robinson, B. H. Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn. Reson. Med.35, 399–412 (1996). ArticleCASPubMed Google Scholar
Pierpaoli, C. & Basser, P. J. Toward a quantitative assessment of diffusion anisotropy. Magn. Reson. Med.36, 893–906 (1996). ArticleCASPubMed Google Scholar
Ulug, A. M., Bakht, O., Bryan R. N. & van Zijl, P. C. M. Mapping of Human Brain Fibers Using Diffusion Tensor Imaging. Proc. Int. Soc. Mag. Reson. Med.4, 1325 (1996) Google Scholar
Douek, P., Turner, R., Pekar, J., Patronas, N. & Le Bihan, D. MR color mapping of myelin fiber orientation. J. Comput. Assist. Tomogr.15, 923–929 (1991). ArticleCASPubMed Google Scholar
Hsu, E. W. & Mori, S. Analytical interpretations of NMR diffusion measurements in an anisotropic medium and a simplified method for determining fiber orientation. Magn. Reson. Med.34, 194–200 (1995). ArticleCASPubMed Google Scholar
Nakada, T. & Matsuzawa, H. Three-dimensional anisotropy contrast magnetic resonance imaging of the rat nervous system: MR axonography. Neurosci. Res.22, 389–398 (1995). ArticleCASPubMed Google Scholar
Makris, N. et al. Morphometry of in vivo human white matter association pathways with diffusion weighted magnetic resonance imaging. Ann. Neurol.42, 951–962 (1997). A monumental work in which DTI-based image contrast was correlated with white matter anatomy in a comprehensive manner for the first time. ArticleCASPubMed Google Scholar
Pajevic, S. & Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn. Reson. Med.42, 526–540 (1999). ArticleCASPubMed Google Scholar
Jones, D. K., Simmons, A., Williams S. C. & Horsfield, M. A. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med.42, 37–41 (1999). ArticleCASPubMed Google Scholar
Mori, S., Crain, B. J., Chacko, V. P. & van Zijl, P. C. M. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annal. Neurol.45, 265–269 (1999). ArticleCASPubMed Google Scholar
Xue, R., van Zijl, P. C. M, Crain, B. J., Solaiyappan, M. & Mori, S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn. Reson. Med.42, 1123–1127 (1999). ArticleCASPubMed Google Scholar
Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vitro fiber tractography using DT-MRI data. Magn. Reson. Med.44, 625–632 (2000). ArticleCASPubMed Google Scholar
Poupon, C. et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicules. NeuroImage12, 184–195 (2000). ArticleCASPubMed Google Scholar
Behrens, T. E. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neurosci.6, 750–757 (2003). ArticleCASPubMed Google Scholar
Ludwig, E. & Klingler, J. Atlas Cerebrei Human: the Internal Structure of the Brain Demonstrated on the Basis of Macroscopical Preparations (Karger, Basel, 1956). Google Scholar
Stieltjes, B. et al. Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage14, 723–735 (2001). ArticleCASPubMed Google Scholar
Catani, M., Howard, R. J., Pajevic, S. & Jones, D. K. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage17, 77–94 (2002). ArticlePubMed Google Scholar
Mori, S. et al. Imaging cortical association tracts in human brain. Magn. Reson. Med.47, 215–223 (2002). ArticlePubMed Google Scholar
Wakana, S., Jiang, H., Nagae-Poetscher, L. M., Van Zijl, P. C. & Mori, S. Fiber tract-based atlas of human white matter anatomy. Radiology230, 77–87 (2004). A comprehensive atlas of the human white matter based on two-dimensional and three-dimensional visualization of DTI data. ArticlePubMed Google Scholar
Mamata, H. et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. Am. J. Neuroradiol.23, 67–75 (2002). PubMedPubMed Central Google Scholar
Alexander, D. C., Pierpaoli, C., Basser, P. J. & Gee, J. C. Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging20, 1131–1139 (2001). ArticleCASPubMed Google Scholar
Jones, D. K. et al. Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage17, 592–617 (2002). ArticlePubMed Google Scholar
Xu, D., Mori, S., Shen, D., van Zijl, P. C. & Davatzikos, C. Spatial normalization of diffusion tensor fields. Magn. Reson. Med.50, 175–182 (2003). ArticlePubMed Google Scholar
Pagani, E., Filippi, M., Rocca, M. A. & Horsfield, M. A. A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage26, 258–265 (2005). ArticleCASPubMed Google Scholar
Pierpaoli, C. et al. Water diffusion change in Wallerian degeneration and their dependence on white matter architecture. NeuroImage13, 1174–1185 (2001). ArticleCASPubMed Google Scholar
Thomalla G. et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. NeuroImage22, 1767–1774 (2004). ArticlePubMed Google Scholar
Lee, J. S., Han, M. K., Kim, S. H., Kwon, O. K. & Kim, J. H. Fiber tracking by diffusion tensor imaging in corticospinal tract stroke: topographical correlation with clinical symptoms. NeuroImage26, 771–776 (2005). ArticlePubMed Google Scholar
Johansen-Berg, H. et al. Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc. Natl Acad. Sci. USA101, 13335–13340 (2004). ArticleCASPubMedPubMed Central Google Scholar
Frank, L. R. Anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med.45, 935–939 (2001). ArticleCASPubMed Google Scholar
Tournier, J. D., Calamante, F., Gadian, D. G. & Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage23, 1176–1185 (2004). ArticlePubMed Google Scholar
Tuch, D. S., Reese, T. G., Wiegell, M. R. & Wedeen, V. J. Diffusion MRI of complex neural architecture. Neuron40, 885–895 (2003). ArticleCASPubMed Google Scholar
Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G. & Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med.54, 1377–1386 (2005). ArticlePubMed Google Scholar
Bürgel, U., Schormann, T., Schleicher, A. & Zilles, K. Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage10, 489–499 (1999). ArticlePubMed Google Scholar
Rademacher, J., Engelbrecht, V., Bü rgel, U., Freund, H. J. & Zilles, K. Measuring in vivo myelination of human white matter fiber tracts with magnetization transfer MR. NeuroImage9, 393–406 (1999). ArticleCASPubMed Google Scholar
Rademacher, J. et al. Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain124, 2232–2258 (2001). ArticleCASPubMed Google Scholar
Mega, M. S. et al. Mapping pathology to metabolism: coregistration of stained whole brain sections to PET in alzheimer's disease. NeuroImage5, 147–153 (1997). ArticleCASPubMed Google Scholar
Toga, A. W., Ambach, K. L., Quinn, B. C., Hutchin, M. & Burton, J. S. Postmortem anatomy from cryosectioned whole human brain. J. Neurosci. Methods5, 239–252 (1994). Article Google Scholar
Teipel, S. J. et al. Measurement of basal forebrain atrophy in Alzheimer's disease using MRI. Brain128, 2626–2644 (2005). ArticlePubMed Google Scholar
Toga, A. W. & Thompson, P. M. Mapping brain asymmetry. Nature Rev. Neurosci.4, 37–38 (2003). ArticleCAS Google Scholar
Toga, A. W. & Thompson, P. M. Genetics of brain structure and intelligence. Ann. Rev. Neurosci.28, 1–23 (2005). ArticleCASPubMed Google Scholar
Grenander, U. & Miller, M. I. Computational Anatomy: an Emerging Discipline. Technical Report, Dept. Mathematics, Brown Univ. (1998). This highly-cited article was influential in stimulating mathematical developments in the field of computational anatomy. A new framework is proposed that represents anatomical variation by defining statistics and probability measures on three-dimensional elastic or fluid mappings that deform a canonical template of anatomy. Google Scholar
Narr, K. L. et al. Mapping morphology of the corpus callosum in schizophrenia. Cereb. Cortex10, 40–49 (2000). ArticleCASPubMed Google Scholar
Thompson, P. M. et al. Cortical variability and asymmetry in normal aging and alzheimer's disease. Cereb. Cortex8, 492–509 (1998). ArticleCASPubMed Google Scholar
Thompson, P. M., Mega, M. S. & Toga, A. W. in Brain Mapping: the Disorders (eds Toga A. W. & Mazziotta, J. C.) 131–177 (Academic, San Diego, 2000). Book Google Scholar
Sowell, E. R. et al. Mapping cortical change across the human life span. Nature Neurosci.6, 309–315 (2003). ArticleCASPubMed Google Scholar
Levitt, J. G. et al. Proton magnetic resonance spectroscopic imaging of the brain in childhood autism. Biol. Psychiatry54, 1355–1366 (2003). ArticleCASPubMed Google Scholar
Mazziotta, J. C., Toga, A. W., Evans, A. C., Fox, P. & Lancaster, J. A probabilistic atlas of the human brain: theory and rationale for its development. NeuroImage2, 89–101 (1995). ArticleCASPubMed Google Scholar
Geschwind, N. & Galaburda, A. M. Cerebral lateralization. Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Arch. Neurol.42, 634–656 (1985). ArticleCASPubMed Google Scholar
Sowell, E. R. et al. Brain abnormalities in early-onset schizophrenia spectrum disorder observed with statistical parametric mapping of structural magnetic resonance images. Am. J. Psychiatry, 157, 1475–1484 (2000). ArticleCASPubMed Google Scholar
Luders, E. et al. Mapping cortical gray matter in the young adult brain: effects of gender. NeuroImage26, 493–501 (2005). ArticleCASPubMed Google Scholar
Crow, T. J. Handedness, language lateralisation and anatomical asymmetry: relevance of protocadherin XY to hominid speciation and the aetiology of psychosis. Point of view. Br. J. Psychiatry181, 295–297 (2002). ArticleCASPubMed Google Scholar
Narr, K. L. et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb. Cortex15, 708–719 (2005). ArticlePubMed Google Scholar
Van Essen, D. C. Surface-based approaches to spatial localization and registration in primate cerebral cortex. NeuroImage23, S97–S107 (2005). Article Google Scholar
van Horn, J. D. Neuroimaging databases as a resource for scientific discovery. Int. Rev. Neurobiol.66, 55–87 (2005). ArticlePubMed Google Scholar
Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neurosci.2, 861–863 (1999). ArticleCASPubMed Google Scholar
Rapoport, J. L., Addington, A. & Frangou, S. The neurodevelopmental model of schizophrenia: what can very early onset cases tell us? Curr. Psychiatry Rep.7, 81–82 (2005). ArticlePubMed Google Scholar
Thompson, P. M. et al. Early cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb. Cortex11, 1–16 (2001). ArticleCASPubMed Google Scholar
Cannon, T. D. et al. Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment and their interactions. Schizophr. Bull.29, 653–669 (2003). ArticlePubMed Google Scholar
Cannon, T. D. et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter and impaired short- and long-term memory. Arch. Gen. Psychiatry62, 1205–1213 (2005). ArticleCASPubMed Google Scholar
Lin, J. J. 3D Pre-operative maps of hippocampal atrophy predict surgical outcomes in temporal lobe epilepsy. Neurology65, 1094–1097 (2005). ArticleCASPubMed Google Scholar
Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G. & Manji, H. K. Lithium-induced increase in human brain grey matter. Lancet356, 1241–1242 (2000). ArticleCASPubMed Google Scholar
Lieberman, D. Z. & Goodwin, F. K. Use of olanzapine in the treatment of bipolar I disorder. Expert Rev. Neurother.4, 759–767 (2004). ArticleCASPubMed Google Scholar
Leow, A. et al. Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method. NeuroImage24, 910–927 (2005). ArticleCASPubMed Google Scholar
Kikinis, R. et al. A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans. Vis. Comput. Graph.2, 232–241 (1996). Article Google Scholar
Mangin, J. F. et al. Brain morphometry using 3D moment invariants. Med. Image Anal.8, 187–196 (2004). ArticlePubMed Google Scholar
Collins, D. L., Peters, T. M., Evans, A. C. An automated 3D non-linear image deformation procedure for determination of gross morphometric variability in the human brain. Proc. Visualization. Biomed. Comput.3, 180–190 (1994). Google Scholar
Thompson, P. M. et al. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. J. Comput. Asst. Tomogr.21, 567–581 (1997). ArticleCAS Google Scholar
Chung, M. K. Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage25, 1256–1265 (2005). ArticlePubMed Google Scholar
Carmichael, O. T. et al. Mapping ventricular changes related to dementia and mild cognitive impairment in a large community-based cohort. IEEE Int. Symp. Biomed. Imaging 315–318 (2006).
Gogtay, N. et al. Dynamic mapping of human cortical development during childhood and adolescence. Proc. Natl Acad. Sci.101, 8174–8179 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sowell, E. R., Thompson, P. M. & Toga, A. W. Mapping changes in the human cortex throughout the span of life. Neuroscientist10, 372–392 (2004). ArticlePubMed Google Scholar
Thompson, P. M. et al. Growth patterns in the developing brain detected by using continuum-mechanical tensor maps. Nature404, 190–193 (2000). ArticleCASPubMed Google Scholar
Lerch, J. P. et al. Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb. Cortex15, 995–1001 (2005). ArticlePubMed Google Scholar
Janke, A. L. et al. 4D deformation modeling of cortical disease progression in Alzheimer's dementia. Magn. Reson. Med.46, 661–666 (2001). ArticleCASPubMed Google Scholar
Friston, K. J. et al. Spatial registration and normalisation of images. Hum. Brain Mapp.2, 16 (1995). Google Scholar
van Essen, D. C. A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. NeuroImage28, 635–662 (2005). ArticlePubMed Google Scholar
Fischl, B. et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage23, S69–S84 (2004). ArticlePubMed Google Scholar
Pitiot, A., Delingette, H., Thompson, P. M. & Ayache, N. Expert knowledge-guided segmentation system for brain MRI. NeuroImage23, S85–S96 (2004). ArticlePubMed Google Scholar
Zijdenbos, A. P., Lerch, J. P., Bedell, B. J. & Evans, A. C. Brain imaging in drug R&D. Biomarkers10, S58–S68 (2005). The authors describe a recent extension of the atlas concept to include large-scale processing of images from drug trials, analysing images that have been mapped into a stereotaxic coordinate space. ArticleCASPubMed Google Scholar
Duncan, J. S. et al. Geometric strategies for neuroanatomic analysis from MRI. NeuroImage23, S34–S45 (2004). ArticlePubMed Google Scholar
Shattuck, D. W., Sandor-Leahy, S. R., Schaper, K. A., Rottenberg, D. A. & Leahy, R. M. Magnetic resonance image tissue classification using a partial volume model. NeuroImage13, 856–876 (2001). ArticleCASPubMed Google Scholar
Dinov, I. D. et al. Analyzing functional brain images in a probabilistic atlas: a validation of sub-volume thresholding. J. Comput. Asst. Tomog.24, 128–138 (2000). ArticleCAS Google Scholar
Rasser, P. E. et al. Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. NeuroImage26, 941–951 (2005). ArticlePubMed Google Scholar
Thompson, P. et al. Mapping hippocampal and ventricular change in Alzheimer's disease. NeuroImage22, 1754–1766 (2004). ArticlePubMed Google Scholar
Lin, C. L. et al. Characterization of perioperative seizures and epilepsy following aneurysmal subarachnoid hemorrhage. J. Neurosurg.99, 978–985 (2003). ArticlePubMed Google Scholar
Ballmaier, M. et al. Localizing gray matter deficits in late onset depression using computational cortical pattern matching methods. Am. J. Psychiatry161, 2091–2099 (2004). ArticlePubMed Google Scholar
Cannon, T. D. et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc. Natl Acad. Sci. USA99, 3228–3233 (2002). ArticleCASPubMedPubMed Central Google Scholar
Narr, K. L. et al. Abnormal gyral complexity in first episode schizophrenia. Biol. Psychiatry55, 859–867 (2004). ArticlePubMed Google Scholar
Thompson, P. et al. Mapping hippocampal and ventricular change in Alzheimer's disease. NeuroImage22, 1754–1766 (2004). ArticlePubMed Google Scholar
Vidal, C. et al. Dynamically spreading frontal and cingulate deficits mapped in adolescents with Schizophrenia. Arch. Gen. Psychiatry63, 25–34 (2006). ArticlePubMed Google Scholar
Sowell, E. R. et al. Cortical abnormalities in children and adolescents with attention deficit hyperactivity disorder. Lancet362, 1699–1707 (2003). ArticlePubMed Google Scholar
Sowell, E. R. et al. Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb. Cortex12, 856–865 (2002). ArticlePubMed Google Scholar
Sowell, E. R. et al. Gray matter thickness abnormalities mapped in children with Tourette Syndrome. Soc. Neurosci. Abstr. 800.15 (2004).
Gogtay, N. et al. Dynamic mapping of cortical brain development in pediatric bipolar illness. Int. Conf. Org. Hum. Brain Mapp. 344 (2004).
Thompson, P. et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci.24, 6028–6036 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mega, M. S. et al. Sulcal variability in the Alzheimer's brain: correlations with cognition. Neurology50, 145–151 (1998). ArticleCASPubMed Google Scholar
Miller, M. Computational anatomy: shape, growth and atrophy comparison via diffeomorphisms. NeuroImage23, S19–S33 (2004). ArticlePubMed Google Scholar
Studholme, C. et al. Deformation tensor morphometry of semantic dementia with quantitative validation. NeuroImage21, 1387–1398 (2004). ArticleCASPubMed Google Scholar
Cannon, T. D. et al. Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases: methods and initial applications to schizophrenia. Neuroinformatics4, 5–19 (2006). ArticlePubMed Google Scholar
Ballmeier, M. et al. Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects, NeuroImage23, 325–335 (2004). Article Google Scholar
Thompson, P. M., Mega, M. S., Vidal, C., Rapoport, J. L. & Toga, A. W. in Lect. Notes Comput. Sci. 2082, 488–501 (2001). Google Scholar
Thompson, P. M. et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc. Natl Acad. Sci. USA98, 11650–11655 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vidal, C. N. et al. dynamically spreading frontal and cingulate deficits mapped in adolescents with schizophrenia. Arch. Gen. Psychiatry63, 25–34 (2006). ArticlePubMed Google Scholar
Worsley, K. J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp.4, 58–73 (1996). ArticleCASPubMed Google Scholar
Friston, K. J. Statistical parametric mapping: ontology and current issues. J. Cereb. Blood Flow Metab.15, 361–370 (1995). ArticleCASPubMed Google Scholar
Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp.2, 189–210 (1995). Article Google Scholar
Ashburner, J. & Friston, K. J. Voxel-based morphometry — the methods. NeuroImage11, 805–821 (2000). ArticleCASPubMed Google Scholar
Thompson, P. M. et al. Thinning of the cerebral cortex in HIV/AIDS reflects CD4+ T-lymphocyte decline. Proc. Natl Acad. Sci.102, 15647–15652 (2005). ArticleCASPubMedPubMed Central Google Scholar
Williams, T. H., Gluhbegoric, N. & Jew, J. Y. The human brain: dissections of the real brain. Virtual Hospital, University of Iowa[online], (1997). Google Scholar