Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks (original) (raw)

References

  1. Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).
    PubMed Google Scholar
  2. Gray, C. M. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989).
    CAS PubMed Google Scholar
  3. Ribary, U. et al. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl Acad. Sci. USA 88, 11037–11041 (1991).
    CAS PubMed Google Scholar
  4. Hopfield, J. J. Pattern recognition computation using action potential timing for stimulus representation. Nature 376, 33–36 (1995).
    CAS PubMed Google Scholar
  5. Buzsáki, G. & Chrobak, J. J. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995).
    PubMed Google Scholar
  6. Lisman, J. E. & Idiart, M. A. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).
    CAS PubMed Google Scholar
  7. Lisman, J. E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22, 233–242 (1999).
    CAS PubMed Google Scholar
  8. Spencer, K. M. et al. Abnormal neural synchrony in schizophrenia. J. Neurosci. 23, 7407–7411 (2003).
    CAS PubMed PubMed Central Google Scholar
  9. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005).
    CAS Google Scholar
  10. Soltesz, I. & Deschênes, M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 70, 97–116 (1993).
    CAS PubMed Google Scholar
  11. Buzsáki, G., Leung, L. S. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 6, 139–171 (1983).
    Google Scholar
  12. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995). A key paper that analyses the properties of hippocampal gamma oscillations in vivo in the non-anesthetized rat. Gamma oscillations occur in all subfields, with the highest power in the dentate gyrus.
    CAS PubMed Google Scholar
  13. Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsáki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003). Shows directly that there are two gamma oscillators in the hippocampus in vivo , one in the dentate gyrus and one in the CA3–CA1 region. The coupling strength between the two oscillators varies during both theta and non-theta states.
    CAS PubMed Google Scholar
  14. Förster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nature Rev. Neurosci. 7, 259–267 (2006).
    Google Scholar
  15. O'Keefe, J. & Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330 (1993).
    CAS PubMed Google Scholar
  16. Skaggs, W. E., McNaughton, B. L., Wilson, M. A. & Barnes, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 149–172 (1996).
    CAS PubMed Google Scholar
  17. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995). The first paper to demonstrate that gamma oscillations are generated in pharmacologically isolated networks of inhibitory interneurons in the presence of a tonic excitatory drive (activation of mGluRs after tetanic stimulation).
    CAS PubMed Google Scholar
  18. Fisahn, A., Pike, F. G., Buhl, E. H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998).
    CAS PubMed Google Scholar
  19. Fellous, J. M. & Sejnowski, T. J. Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus 10, 187–197 (2000).
    CAS PubMed Google Scholar
  20. Hájos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).
    PubMed Google Scholar
  21. Fisahn, A. et al. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J. Neurosci. 24, 9658–9668 (2004). Highly detailed analysis of the cellular and molecular mechanisms of kainate-induced gamma oscillations in the hippocampal CA3 region.
    CAS PubMed Google Scholar
  22. LeBeau, F. E. N., Towers, S. K., Traub, R. D., Whittington, M. A. & Buhl, E. H. Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. J. Physiol. (Lond.) 542, 167–179 (2002).
    CAS Google Scholar
  23. Mann, E. O., Suckling, J. M., Hajos, N., Greenfield, S. A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005).
    CAS PubMed Google Scholar
  24. Towers, S. K. et al. Fast network oscillations in the rat dentate gyrus in vitro. J. Neurophysiol. 87, 1165–1168 (2002).
    PubMed Google Scholar
  25. Pöschel, B., Draguhn, A. & Heinemann, U. Glutamate-induced gamma oscillations in the dentate gyrus of rat hippocampal slices. Brain Res. 938, 22–28 (2002).
    PubMed Google Scholar
  26. Cunningham, M. O., Davies, C. H., Buhl, E. H., Kopell, N. & Whittington, M. A. Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro. J. Neurosci. 23, 9761–9769 (2003).
    CAS PubMed Google Scholar
  27. Buhl, E. H., Tamás, G. & Fisahn, A. Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J. Physiol. (Lond.) 513, 117–126 (1998).
    CAS Google Scholar
  28. Traub, R. D., Whittington, M. A., Colling, S. B., Buzsáki, G. & Jefferys, J. G. R. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. (Lond.) 493, 471–484 (1996).
    CAS Google Scholar
  29. McBain, C. J., DiChiara, T. J. & Kauer, J. A. Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission. J. Neurosci. 14, 4433–4445 (1994).
    CAS PubMed Google Scholar
  30. van Hooft, J. A., Giuffrida, R., Blatow, M. & Monyer, H. Differential expression of group I metabotropic glutamate receptors in functionally distinct hippocampal interneurons. J. Neurosci. 20, 3544–3551 (2000).
    CAS PubMed Google Scholar
  31. Fisahn, A. et al. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 33, 615–624 (2002).
    CAS PubMed Google Scholar
  32. Traub, R. D. et al. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12, 4093–4106 (2000). Principal neuron–interneuron model of carbachol-induced gamma oscillations in the CA3 region. In this model, spontaneous EPSCs at principal neuron–interneuron synapses, generated by ectopic action potentials in a network of gap-junction coupled principal neuron axons, have a crucial role.
    CAS PubMed Google Scholar
  33. Traub, R. D. et al. Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21, 9478–9486 (2001).
    CAS PubMed Google Scholar
  34. Hormuzdi, S. G. et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 31, 487–495 (2001).
    CAS PubMed Google Scholar
  35. Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H. & Buzsáki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J. Neurosci. 23, 1013–1018 (2003).
    CAS PubMed Google Scholar
  36. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature 368, 823–828 (1994).
    CAS PubMed Google Scholar
  37. Pawelzik, H., Hughes, D. I. & Thomson, A. M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002).
    PubMed Google Scholar
  38. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996). An exhaustive review of both morphological and functional properties of GABA-containing interneurons in the hippocampus.
    CAS PubMed Google Scholar
  39. Somogyi, P. & Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. (Lond.) 562, 9–26 (2005).
    CAS Google Scholar
  40. Kawaguchi, Y. & Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).
    CAS PubMed Google Scholar
  41. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).
    CAS PubMed Google Scholar
  42. Soltesz, I. Diversity in the Neuronal Machine (Oxford Univ. Press, Oxford, 2006).
    Google Scholar
  43. Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res. 416, 369–374 (1987).
    CAS PubMed Google Scholar
  44. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995).
    CAS PubMed Google Scholar
  45. Kisvárday, Z. F., Beaulieu, C. & Eysel, U. T. Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J. Comp. Neurol. 327, 398–415 (1993).
    PubMed Google Scholar
  46. Gulyás, A. I., Megias, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999).
    PubMed Google Scholar
  47. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).
    CAS PubMed Google Scholar
  48. Gillies, M. J. et al. A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J. Physiol. (Lond.) 543, 779–793 (2002).
    CAS Google Scholar
  49. Jonas, P., Bischofberger, J., Fricker, D. & Miles, R. Interneuron Diversity series: Fast in, fast out — temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27, 30–40 (2004).
    CAS PubMed Google Scholar
  50. Pike, F. G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. (Lond.) 529, 205–213 (2000).
    CAS Google Scholar
  51. Penttonen, M., Kamondi, A., Acsády, L. & Buzsáki, G. Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur. J. Neurosci. 10, 718–728 (1998).
    CAS PubMed Google Scholar
  52. Hájos, N. et al. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137 (2004). Whole-cell recording from identified interneuron types during carbachol-induced gamma oscillations in the CA3 subfield in vitro . Various types of interneuron (for example, basket cells and oriens alveus–lacunosum moleculare interneurons) fire at different frequencies and phases.
    PubMed Google Scholar
  53. Gloveli, T. et al. Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J. Physiol. (Lond.) 562, 131–147 (2005). Whole-cell recording from identified interneuron types during kainate-induced gamma oscillations in the hippocampal CA3 region in vitro . Basket cells fire, on average, 1.2 action potentials per gamma cycle.
    CAS Google Scholar
  54. Freund, T. F. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003).
    CAS PubMed Google Scholar
  55. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nature Neurosci. 8, 1319–1328 (2005).
    CAS PubMed Google Scholar
  56. Christen, M. Build it, and you understand it. Bioworld 7, 6–8 (2002).
    Google Scholar
  57. Wang, X.-J. & Rinzel, J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput. 4, 84–97 (1992).
    Google Scholar
  58. Hansel, D., Mato, G. & Meunier, C. Phase reduction and neuronal modeling. Concepts Neurosci. 4, 193–210 (1993).
    Google Scholar
  59. van Vreeswijk, C., Abbott, L. F. & Ermentrout, G. B. When inhibition not excitation synchronizes neural firing. J. Comp. Neurosci. 1, 313–321 (1994). A key paper demonstrating that synaptic inhibition rather than excitation leads to synchronized activity in a two-neuron system if the rise time of synaptic events is longer than the duration of action potentials.
    CAS Google Scholar
  60. White, J. A., Chow, C. C., Ritt, J., Soto-Treviño, C. & Kopell, N. Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J. Comput. Neurosci. 5, 5–16 (1998).
    CAS PubMed Google Scholar
  61. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. Electrical synapses and synchrony: the role of intrinsic currents. J. Neurosci. 23, 6280–6294 (2003).
    CAS PubMed Google Scholar
  62. Stiefel, K. M., Wespatat, V., Gutkin, B., Tennigkeit, F. & Singer, W. Phase dependent sign changes of GABAergic synaptic input explored in-silicio and in-vitro. J. Comput. Neurosci. 19, 71–85 (2005).
    PubMed Google Scholar
  63. Koch, C. Biophysics of Computation (Oxford Univ. Press, Oxford, 1999).
    Google Scholar
  64. Mirollo, R. E. & Strogatz, S. H. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 6, 1645–1662 (1990).
    Google Scholar
  65. Wang, X.-J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996). A landmark modelling study that systematically examines the conditions under which coherent gamma oscillations are generated in interneuron networks.
    CAS PubMed Google Scholar
  66. Tiesinga, P. H. E. & José, J. V. Robust gamma oscillations in networks of inhibitory hippocampal interneurons. Network Comput. Neural. Syst. 11, 1–23 (2000).
    CAS Google Scholar
  67. Maex, R. & de Schutter, E. Resonant synchronization in heterogeneous networks of inhibitory neurons. J. Neurosci. 23, 10503–10514 (2003). Emphasizes the importance of delays (conduction and synaptic) for synchronization in interneuron network models.
    CAS PubMed Google Scholar
  68. Vida, I., Bartos, M. & Jonas, P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107–117 (2006).
    CAS PubMed Google Scholar
  69. Ermentrout, B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996).
    CAS PubMed Google Scholar
  70. Parra, P., Gulyás, A. I. & Miles, R. How many subtypes of inhibitory cells in the hippocampus? Neuron 20, 983–993 (1998).
    CAS PubMed Google Scholar
  71. Neltner, L., Hansel, D., Mato, G. & Meunier, C. Synchrony in heterogeneous networks of spiking neurons. Neural Comput. 12, 1607–1641 (2000).
    CAS PubMed Google Scholar
  72. Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999). Shows that weak stochastic synchronization occurs in inhibitory interneuron networks if strong coupling is combined with noise. Weak stochastic synchronization differs from strong synchronization in its lower sensitivity to heterogeneities.
    CAS PubMed Google Scholar
  73. Brunel, N. & Hansel, D. How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 18, 1066–1110 (2006).
    PubMed Google Scholar
  74. Cobb, S. R. et al. Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79, 629–648 (1997).
    CAS PubMed Google Scholar
  75. Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P. & Jonas, P. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–2698 (2001).
    CAS PubMed Google Scholar
  76. Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl Acad. Sci. USA 99, 13222–13227 (2002).
    CAS PubMed Google Scholar
  77. Tamás, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998).
    PubMed Google Scholar
  78. Tamás, G., Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000).
    PubMed Google Scholar
  79. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999).
    CAS PubMed Google Scholar
  80. Galarreta, M. & Hestrin, S. Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc. Natl Acad. Sci. USA 99, 12438–12443 (2002). Demonstrates fast inhibition at GABA synapses between fast-spiking, parvalbumin-expressing interneurons in the neocortex. Together with similar results obtained in the hippocampus, these results suggest that fast inhibition at basket cell–basket cell synapses is a general phenomenon occurring throughout the cortex.
    CAS PubMed Google Scholar
  81. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron–principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).
    CAS PubMed Google Scholar
  82. Klausberger, T., Roberts, J. D. B. & Somogyi, P. Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J. Neurosci. 22, 2513–2521 (2002).
    CAS PubMed Google Scholar
  83. Hefft, S., Kraushaar, U., Geiger, J. R. P. & Jonas, P. Presynaptic short-term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus. J. Physiol. (Lond.) 539, 201–208 (2002).
    CAS Google Scholar
  84. Alger, B. E. & Nicoll, R. A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature 281, 315–317 (1979).
    CAS PubMed Google Scholar
  85. Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A. & Laursen, A. M. Two different responses of hippocampal pyramidal cells to application of γ-amino butyric acid. J. Physiol. (Lond.) 305, 279–296 (1980).
    CAS Google Scholar
  86. Martina, M., Royer, S. & Paré, D. Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J. Neurophysiol. 86, 2887–2895 (2001).
    CAS PubMed Google Scholar
  87. Chavas, J. & Marty, A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J. Neurosci. 23, 2019–2031 (2003).
    CAS PubMed Google Scholar
  88. Woodin, M. A., Ganguly, K. & Poo, M.-M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39, 807–820 (2003).
    CAS PubMed Google Scholar
  89. Katsumaru, H., Kosaka, T., Heizmann, C. W. & Hama, K. Gap junctions on GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus (CA1 region). Exp. Brain Res. 72, 363–370 (1988).
    CAS PubMed Google Scholar
  90. Fukuda, T., Kosaka, T., Singer, W. & Galuske, R. A. W. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26, 3434–3443 (2006).
    CAS PubMed Google Scholar
  91. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).
    CAS PubMed Google Scholar
  92. Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004).
    CAS PubMed Google Scholar
  93. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).
    CAS PubMed Google Scholar
  94. Meyer, A. H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002).
    CAS PubMed Google Scholar
  95. Deans, M. R., Gibson J. R., Sellitto, C., Connors, B. W. & Paul, D. L. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31, 477–485 (2001).
    CAS PubMed Google Scholar
  96. Geiger, J. R. P., Lübke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron–interneuron synapse. Neuron 18, 1009–1023 (1997).
    CAS PubMed Google Scholar
  97. Miles, R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J. Physiol. (Lond.) 428, 61–77 (1990). The first paper to show fast and strong synaptic excitation of interneurons by pyramidal cells.
    CAS Google Scholar
  98. Gulyás, A. I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993).
    PubMed Google Scholar
  99. Ali, A. B., Deuchars, J., Pawelzik, H. & Thomson, A. M. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J. Physiol. (Lond.) 507, 201–217 (1998).
    CAS Google Scholar
  100. Biro, A. A., Holderith, N. B. & Nusser, Z. Quantal size is independent of the release probability at hippocampal excitatory synapses. J. Neurosci. 25, 223–232 (2005).
    CAS PubMed Google Scholar
  101. Buhl, E. H. et al. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. J. Physiol. (Lond.) 500, 689–713 (1997).
    CAS Google Scholar
  102. Angulo, M. C., Staiger, J. F., Rossier, J. & Audinat, E. Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection. J. Neurosci. 19, 1566–1576 (1999).
    CAS PubMed Google Scholar
  103. Galarreta, M. & Hestrin, S. Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292, 2295–2299 (2001).
    CAS PubMed Google Scholar
  104. Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).
    CAS PubMed Google Scholar
  105. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993).
    CAS PubMed Central Google Scholar
  106. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).
    CAS PubMed Google Scholar
  107. Pfeuty, B., Mato, G., Golomb, D. & Hansel, D. The combined effects of inhibitory and electrical synapses in synchrony. Neural Comput. 17, 633–670 (2005).
    PubMed Google Scholar
  108. Kopell, N. & Ermentrout, B. Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl Acad. Sci. USA 101, 15482–15487 (2004). Shows that gap junctions complement inhibitory synapses in the generation of oscillations by permitting the propagation of both suprathreshold and subthreshold potentials.
    CAS PubMed Google Scholar
  109. Whittington, M. A. & Traub, R. D. Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676–682 (2003).
    CAS PubMed Google Scholar
  110. Brunel, N. & Wang, X.-J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003). Simulates the oscillatory activity of a principal neuron–interneuron network in the weak stochastic synchronization regime. The study emphasizes the importance of delays in setting network frequency.
    PubMed Google Scholar
  111. Traub, R. D., Whittington, M. A., Stanford, I. M. & Jefferys, J. G. R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383, 621–624 (1996).
    CAS PubMed Google Scholar
  112. Pearce, R. A. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron 10, 189–200 (1993).
    CAS PubMed Google Scholar
  113. White, J. A., Banks, M. I., Pearce, R. A. & Kopell, N. J. Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma–theta rhythm. Proc. Natl Acad. Sci. USA 97, 8128–8133 (2000).
    CAS PubMed Google Scholar
  114. Lee, A. K., Manns, I. D., Sakmann, B. & Brecht, M. Whole-cell recordings in freely moving rats. Neuron 51, 399–407 (2006).
    CAS PubMed Google Scholar
  115. Wulff, P. & Wisden W. Dissecting neural circuitry by combining genetics and pharmacology. Trends Neurosci. 28, 44–50 (2005).
    CAS PubMed Google Scholar
  116. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004).
    PubMed Google Scholar
  117. Traub, R. D. et al. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194–2232 (2005).
    PubMed Google Scholar
  118. Buzsáki, G., Geisler, C., Henze, D. A. & Wang, X.-J. Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004).
    PubMed Google Scholar
  119. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
    CAS PubMed Google Scholar
  120. Sik, A., Ylinen, A., Penttonen, M. & Buzsáki, G. Inhibitory CA1–CA3–hilar region feedback in the hippocampus. Science 265, 1722–1724 (1994).
    CAS PubMed Google Scholar
  121. Ceranik, K. et al. A novel type of GABAergic interneuron connecting the input and the output regions of the hippocampus. J. Neurosci. 17, 5380–5394 (1997).
    CAS PubMed Google Scholar
  122. Vida, I., Halasy, K., Szinyei, C., Somogyi, P. & Buhl, E. H. Unitary IPSPs evoked by interneurons at the stratum radiatum–stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J. Physiol. (Lond.) 506, 755–773 (1998).
    CAS Google Scholar
  123. Ernst, U., Pawelzik, K. & Geisel, T. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74, 1570–1573 (1995).
    CAS PubMed Google Scholar
  124. Gulledge, A. T. & Stuart, G. J. Excitatory actions of GABA in the cortex. Neuron 37, 299–309 (2003).
    CAS PubMed Google Scholar
  125. Kaila, K. Ionic basis of GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489–537 (1994).
    CAS PubMed Google Scholar
  126. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002).
    CAS Google Scholar
  127. Banke, T. G. & McBain, C. J. GABAergic input onto CA3 hippocampal interneurons remains shunting throughout development. J. Neurosci. 26, 11720–11725 (2006).
    CAS PubMed Google Scholar
  128. Gao, B. & Fritschy, J. M. Selective allocation of GABAA receptors containing the α1 subunit to neurochemically distinct subpopulations of rat hippocampal interneurons. Eur. J. Neurosci. 6, 837–853 (1994).
    CAS PubMed Google Scholar

Download references